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Figure 1: Our application runs in real-time directly on a smartwatch, detecting and classifying human activities. The system 
first uses IMU data to detect the presence of an event. Once an event is detected, it triggers a multimodal activity classifier that 
activates the microphones and uses both IMU and audio data to classify the activity. 

Abstract 
Despite advances in practical and multimodal fine-grained Hu-
man Activity Recognition (HAR), a system that runs entirely on 
smartwatches in unconstrained environments remains elusive. We 
present WatchHAR, an audio and inertial-based HAR system that 
operates fully on smartwatches, addressing privacy and latency 
issues associated with external data processing. By optimizing each 
component of the pipeline, WatchHAR achieves compounding per-
formance gains. We introduce a novel architecture that unifies 
sensor data preprocessing and inference into an end-to-end train-
able module, achieving 5x faster processing while maintaining over 
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90% accuracy across more than 25 activity classes. WatchHAR out-
performs state-of-the-art models for event detection and activity 
classification while running directly on the smartwatch, achiev-
ing 9.3 ms processing time for activity event detection and 11.8 ms 
for multimodal activity classification. This research advances on-
device activity recognition, realizing smartwatches’ potential as 
standalone, privacy-aware, and minimally-invasive continuous ac-
tivity tracking devices. 

CCS Concepts 
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools; • Applied computing → Health in-
formatics. 

Keywords 
Smartwatches, On-device processing, Real-time mobile sensing, 
Human activity recognition, Privacy aware sensing 

387

https://orcid.org/0009-0004-5552-0764
https://orcid.org/0000-0003-3990-582X
https://orcid.org/0000-0003-0816-8150
https://orcid.org/0000-0003-2497-0530
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3716553.3750775
mailto:kahuja@northwestern.edu
mailto:vascoxu@uchicago.edu
mailto:hankhoffmann@cs.uchicago.edu
mailto:taeyoungyeon@northwestern.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3716553.3750775&domain=pdf&date_stamp=2025-10-12


ICMI ’25, October 13–17, 2025, Canberra, ACT, Australia Yeon et al. 

ACM Reference Format: 
Taeyoung Yeon, Vasco Xu, Henry Hoffmann, and Karan Ahuja. 2025. Watch-
HAR: Real-time On-device Human Activity Recognition System for Smart-
watches. In Proceedings of the 27th International Conference on Multimodal 
Interaction (ICMI ’25), October 13–17, 2025, Canberra, ACT, Australia. ACM, 
New York, NY, USA, 8 pages. https://doi.org/10.1145/3716553.3750775 

1 Introduction 
Human Activity Recognition (HAR) has become a cornerstone of 
ubiquitous computing, with applications ranging from health mon-
itoring and context-aware services to assistive technologies for 
people who are deaf or hard of hearing. While significant strides 
have been made in developing accurate and robust HAR systems for 
Activities of Daily Living (ADL), a persistent challenge has been cre-
ating solutions that are both practical for everyday use and capable 
of operating in unconstrained environments. Smartwatches, with 
their array of sensors and constant proximity to users, present an 
ideal platform for HAR. However, most current smartwatch-based 
sensing systems rely on external data processing, raising concerns 
about privacy, latency, and the need for constant connectivity to 
remote machines to offload compute [2, 6, 8, 19]. 

On-device processing directly addresses these concerns by en-
suring real-time feedback and safeguarding sensitive information. 
For example, workers in construction or manufacturing often oper-
ate in areas with limited connectivity; delayed notifications due to 
reliance on remote servers can undermine safety or productivity. 
Similarly, elder-care systems require continuous tracking to detect 
emergencies in real-time. In such cases, offloading sensitive health 
data to external infrastructure not only risks privacy breaches but 
also increases response latency. 

WatchHAR addresses these challenges by introducing a novel 
HAR system that operates entirely on smartwatches, leveraging 
both audio and inertial data (Figure 2). We chose IMU and audio sen-
sors as they are universally available on smartwatches and provide 
complementary information – audio provides distinctive signatures 
for audible activities but is power-intensive, while IMUs are light-
weight and can capture fine-grained hand movements but produce 
less distinct signals. By eliminating the need for external data pro-
cessing, WatchHAR enhances privacy and reduces latency while 
maintaining high accuracy across a wide range of activities. The 
system employs a two-stage approach: a lightweight IMU-based ac-
tivity detector that triggers a more resource-intensive multimodal 
classifier only when necessary. This strategy optimizes power con-
sumption without sacrificing performance (Section 3.1). This is 
enabled by WatchHAR’s end-to-end trainable preprocessing mod-
ule, which applies a Short-Time Fourier Transform (STFT) and 
approximates a mel-filter bank as a 1D convolutional operation that 
runs efficiently on mobile neural processors. 

Through careful optimization of each component of the pipeline, 
WatchHAR achieves compounding performance gains. The system 
outperforms the latest models for event detection (by 5.5%, Table 1) 
and even achieves modest improvements in activity classification 
(by 0.7%) while running entirely on the smartwatch, with process-
ing times of 9.3 ms for activity detection and 11.8 ms for multimodal 
classification. WatchHAR’s novel architecture unifies sensor data 
preprocessing and inference into a single, trainable module, provid-
ing a 5x performance boost while maintaining over 90% accuracy 

Figure 2: Our WatchHAR system running in real-time on an 
Apple Watch Series 7 (45mm), demonstrating activity recog-
nition across four different contexts: brushing hair, hammer-
ing, washing dishes, and clapping. 

across more than 25 activity classes. These advancements demon-
strate WatchHAR’s potential to revolutionize on-device activity 
recognition, realizing the full potential of smartwatches as stan-
dalone devices with minimally invasive activity tracking. 

Our main contributions are: 
(1) A complete multimodal HAR system running entirely on 

commodity smartwatches with real-time performance (9.3 ms event 
detection, 11.8 ms activity classification); 

(2) An end-to-end trainable audio preprocessing module inte-
grating STFT and mel-filter banks directly into the neural network 
for efficient on-device execution; 

(3) Comprehensive evaluation demonstrating 5× faster process-
ing and 5-47× lower computational cost (FLOPs) than state-of-the-
art while maintaining competitive accuracy; 

(4) Open-source implementation, models, and evaluation scripts 
to foster reproducibility and community adoption 1 . 

2 Related Work 
Human Activity Recognition (HAR) has seen significant advance-
ments in recent years, particularly in the domain of wearable tech-
nology. A wide range of wearable devices have been explored for 
HAR, including wrist-worn sensors [3, 4, 18, 20], smart rings [26], 
earbuds [28], and smartwatches [8, 9, 17, 19, 27]. These devices 
have proven effective in identifying various activities, from fitness 
exercises to daily tasks. 

Smartwatches, housing a rich collection of sensors including 
IMUs and microphones, have proven highly effective for activity 
recognition in everyday settings. For example, SAMoSA [19] and 
Bhattacharya et al. [8] highlight the benefits of combining audio 
and IMU data. SAMoSA achieved 92.2% accuracy across various 
contexts using 1kHz audio and 50Hz IMU data, demonstrating 
that even lower-sampled audio can enhance activity recognition 
while preserving privacy. They proposed an IMU-based activity 
detector that activates the microphone only upon detecting an ac-
tivity, enabling efficient multimodal classification. Bhattacharya 
et al. [8] showcased robust multimodal sensor fusion techniques, 

1https://github.com/SPICExLAB/WatchHAR 
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performing well in both controlled and real-world scenarios. De-
spite these advancements, most systems treat smartwatches merely 
as data collectors and offload processing to smartphones or desk-
tops [8, 19, 26, 27]. This approach, while computationally effective, 
compromises privacy and real-time responsiveness. 

Some efforts have been made towards on-device processing, 
such as Kim et al.’s [15] exercise monitoring system using natural 
magnetism in exercise equipment, and Zhang et al.’s [28] cough 
detection system that uses IMU sensor values to activate cough 
detection. Kunwar et al. [17] also explored robust and deployable 
gesture recognition for smartwatches. However, these solutions 
primarily target a limited range of classes and utilize IMU data, 
avoiding the power-hungry and computationally intensive audio 
processing despite its rich contextual information. 

The key challenge lies in developing a system that can lever-
age the rich information from both audio and IMU sensors to 
support the fidelity of HAR while operating entirely on resource-
constrained wearable devices. This requires not only efficient algo-
rithms but also novel approaches to sensor data processing, gating 
and fusion. WatchHAR overcomes these challenges by implement-
ing a 1D convolution approach for generating log-mel spectrograms 
and combining it with efficient convolutional classifier architec-
tures, allowing the model to run on smartwatch neural accelerators 
in real-time. 

3 Model Architecture 
Building upon prior work, SAMoSA[19], which introduced the con-
cepts of the IMU Event Detector and Multimodal Activity Classifier, 
we have significantly improved the model architecture to optimize 
for on-device application. Our system architecture maintains these 
two core components while balancing computational efficiency and 
power consumption for real-time activity recognition on smart-
watches (Figure 3). 

To ensure our system runs efficiently on smartwatches, we im-
plement several optimization techniques on the trained models. We 
first traced our PyTorch models using torch.jit.trace with example 
tensors matching our expected input shapes with batch size 1 for 
simulating real-time inference. This intermediate representation 
was then converted to CoreML [5] for optimized execution on Apple 
Watch hardware. We apply 16-bit float quantization, which halves 
the model size and improves inference speed with no impact on ac-
curacy. All inference runs on the Apple Watch Series 7 (45mm) GPU 
via CoreML for optimal performance. We carefully tune the window 
sizes and hop lengths for both the event detector and classifier to 
balance between accuracy, latency, and computational load. These 
optimizations enable our system to run in real-time on commodity 
smartwatch hardware while maintaining high accuracy across a 
wide range of activities. 

3.1 IMU-Only Event Detector 
We use a lightweight IMU-based event detector to trigger the more 
resource-intensive multimodal classifier. Our detector uses a 1D 
depthwise Convolutional Neural Network (CNN) architecture [12], 
processing 3-second windows of 6-axis IMU data (3-axis accelerom-
eter and 3-axis gyroscope) sampled at 50 Hz. The model consists of 
four convolutional blocks with increasing filter counts (64 to 128) 

and decreasing kernel sizes (10 to 5), interspersed with max pooling 
layers, followed by fully connected layers (512, 256, 128 nodes) and 
a final sigmoid output for binary event detection (activity detected 
or not). 

To ensure rapid detection of event onset while minimizing false 
positives from small motions, we use a 3-second rolling window 
with a 20 ms hop length and apply a 2-second moving average to 
filter out spurious detections. Our system uses a two-stage detection 
process to balance performance and power consumption. The IMU-
Only Event Detector continuously monitors for the presence of an 
event and triggers the Multimodal Activity Classifier, activating 
the microphone, only when an event is detected. Otherwise, the 
microphone remains off, conserving energy during idle periods. 

3.2 Multimodal Activity Classification 
Our Multimodal Activity Classifier (Figure 3) processes both IMU 
and audio data to achieve high-accuracy activity recognition. Since 
audio adds a significant computational overhead, we use shorter 
window sizes to enable faster processing and reduce latency. Both 
IMU and audio data use 1-second windows with a 20 ms hop length, 
allowing for fine-grained temporal resolution in our classifications. 

We implement an end-to-end trainable audio preprocessing mod-
ule directly within our neural network [11]. Our architecture con-
sists of three main components: a Short-Time Fourier Transform 
(STFT) implemented using a 1D convolutional layer, a mel-filter 
bank designed as a trainable linear layer, and an amplitude-to-DB 
conversion using a logarithmic activation function. The STFT layer 
uses two separate convolutions for the real and imaginary parts, 
with kernel size corresponding to the FFT size and stride deter-
mining the hop length. The mel-filter bank layer is initialized with 
triangular mel filters but remains trainable, potentially learning 
optimized filter banks for our specific human activity recognition 
task. This is key, as filters suited for HAR may differ greatly from 
those originally designed for speech recognition tasks. Lastly, the 
amplitude-to-DB conversion uses a logarithmic activation function 
to produce a spectrogram that is then passed to the audio feature 
encoder. 

For the audio encoder, we use a MobileNetV3 [14] backbone pre-
trained on the AudioSet dataset [13], without any platform-specific 
modifications. This choice offers a good balance between model 
size, computational efficiency, and accuracy. The MobileNetV3 ar-
chitecture incorporates inverted residual blocks with squeeze-and-
excitation modules, platform-aware neural architecture search for 
optimized layer design, and efficient last-stage design for classifica-
tion tasks. 

For the IMU encoder, we adopt the ConvBoost architecture [21]. 
This model uses a standard 3-layer 2D CNN structure optimized for 
efficient processing of multivariate time series data such as IMU 
signals. Each layer uses 5×1 kernels to extract temporal features, 
with max pooling applied after the first two convolutional layers. 
ReLU activations are used throughout the network for non-linearity. 
The classifier consists of two fully connected layers with dropout 
(𝑝 = 0.5) regularization to prevent overfitting. This architecture pri-
oritizes simplicity and computational efficiency while maintaining 
effective feature extraction for human activity recognition tasks. 
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Figure 3: Overview of WatchHAR’s Multimodal Activity Classifier. The model processes 1-second windows of raw audio and 
6-axis IMU data to predict activities. Audio preprocessing is integrated directly into the neural network as trainable layers. 

To effectively combine information from IMU and audio modal-
ities, we implement a Gated Fusion mechanism [7] rather than 
simple feature concatenation. Both IMU and audio embeddings are 
first projected into a shared 256-dimensional space using separate 
linear layers. Each projected embedding is then passed through its 
own gating network – a linear layer followed by a sigmoid activa-
tion – that produces a vector of weights between 0 and 1. These 
weights are applied to the projected features through element-wise 
multiplication, effectively scaling each feature dimension by its 
learned importance. The gated IMU and audio features are then 
summed together and passed through an additional linear layer to 
produce the final 256-dimensional fused representation. This fused 
vector is then passed through a final classifier head to predict class 
probabilities. All components are fully differentiable and jointly 
trained with the rest of the model. 

The gated fusion mechanism is trained end-to-end with binary 
cross-entropy loss, learning to weight modalities based on their 
relevance to each activity. This approach is particularly effective in 
the P-LOPO setting (Section 6) where some personalization data is 
available for user adaptation. 

4 Datasets 
To train and evaluate WatchHAR, we utilize the following publicly 
available smartwatch datasets, which were collected in previous 
studies. 

SAMoSA Dataset [19]: The SAMoSA dataset was collected from 
20 participants (mean age 23.3, all right-handed) across 60 diverse 
environments. Data was recorded using a Fossil Gen 5 smartwatch, 
capturing synchronized 9-axis IMU data (accelerometer, gyroscope, 
and orientation) at 50 Hz and uncompressed audio at 16 kHz, later 

post-processed to 1 kHz for privacy preservation. The dataset in-
cludes 26 activities performed in four contexts: kitchen, bathroom, 
workshop, and miscellaneous. Each participant performed every 
activity three times per context, resulting in 14.2 hours of data in 
total – 5.9 hours of labeled activity data and 8.3 hours of transition 
(“Other") data. All activities were performed in participants’ homes 
using their own appliances and tools, naturally incorporating am-
bient background noise. This dataset is used to train and evaluate 
both activity detection and classification. 

Semi-Naturalistic and In-the-Wild Dataset [8]: We used two 
complementary datasets from Bhattacharya et al.’s work. First, the 
Semi-Naturalistic dataset was collected from 15 participants (9 
female, 6 male, mean age 43.6), representing diverse professional 
and socioeconomic backgrounds. Data was captured using a Fossil 
Gen 4 smartwatch, recording accelerometer and gyroscope data 
at 50 Hz, and audio data at 22.05 kHz. Participants performed 23 
activities twice across two sessions, with each activity lasting a 
minimum of 30 seconds. Data collection was conducted remotely 
via video calls, and participants knocked on a surface to mark 
the start and end of activities. Continuous recordings captured all 
activities, including in-between movements, and manual annotation 
was performed using sensor data and video footage. 

In addition, an In-the-Wild dataset was gathered from five ad-
ditional participants (4 males, 1 female, mean age 27). These partici-
pants wore the same smartwatch alongside a smartphone mounted 
on their chest, which captured 25-second egocentric video clips 
every minute using a dedicated mobile application. Data collection 
for the in-the-wild study was performed without any predefined ac-
tivity scripts, allowing participants to engage in their daily routines 
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Table 1: Event Detection Model Performance Comparison between SAMoSA and WatchHAR on Apple Watch Series 7 

Method F1 score (%) Processing Time (ms) Onset Latency (sec) Offset Latency (sec) 

SAMoSA [IMU @ 50 Hz] 88.0 55.4 0.62 0.16 
WatchHAR [IMU @ 50 Hz] 93.5 9.3 0.27 0.07 

naturally over two separate sessions each, totaling 10 in-the-wild 
sessions. 

5 Evaluation 
We evaluate WatchHAR’s performance against prior smartwatch-
based approaches, focusing on aspects critical for real-time appli-
cations: processing time, model size, and accuracy across different 
settings. All models were implemented using PyTorch version 2.1.2 
and converted to CoreML format using coremltools version 7.1 with 
float16 quantization for running on Apple Devices. Converting 32-
bit models to 16-bit had no impact on accuracy while halving the 
model size. On-device performance evaluations were conducted 
using an Apple Watch Series 7 (45mm) GPU via CoreML library. 

5.1 IMU-Only Event Detector 
We compare our Depthwise CNN1D Event Detection Model with 
SAMoSA’s Random Forest event detection model, as shown in Table 
1. WatchHAR outperforms SAMoSA across all metrics, achieving 
higher F1 scores (93.5% vs. 88.0%). As noted in Section 3.1, to ad-
dress potential mispredictions due to data skewness, we applied a 
2-second moving average to the output probabilities, smoothing 
predictions and reducing spurious outputs. This improved our F1 
score from 92.5% to 93.5% with negligible computational overhead. 

Compared to SAMoSA, WatchHAR demonstrates significantly 
faster processing times (9.3 ms vs. 55.4 ms)2 . Processing time in-
cludes data preprocessing and model inference for a single IMU 
window. WatchHAR’s processing efficiency stems from streamlined 
GPU feature computation. SAMoSA calculates eight statistical fea-
tures – mean, standard deviation, max, min, median, variance, skew-
ness, and kurtosis – for each of the nine IMU values, requiring 28.76 
ms on the Apple Watch Series 7 (45mm). In contrast, our 1D CNN 
only normalizes raw IMU data, completing in just 3 ms. We also 
measured onset latency (i.e., the delay between the physical start of 
an event and its detection by the model) and offset latency (i.e., the 
delay in detecting the end of an event). WatchHAR achieves lower 
onset (0.27s vs 0.62s) and offset (0.07s vs 0.16s) latencies compared 
to SAMoSA. 

5.2 Multimodal Activity Classification 
We compare our Multimodal Activity Classifier with two prior 
works, SAMoSA [19] and Bhattacharya et al. [8] on their respec-
tive datasets, as summarized in Table 2. All models were evaluated 
using a leave-one-participant-out (LOPO) cross-validation scheme 
or Personalized-LOPO (P-LOPO), which incorporates a subset of 

2SAMoSA originally reported 4.8 ms on MacBook Air (M1). We measured both methods 
on Apple Watch Series 7 (45mm) for fair comparison. WatchHAR’s event detector 
inference time is 2.1 ms on M1 hardware 

test participants’ data during training to simulate partial personal-
ization. In our P-LOPO evaluation, we use personalized data from 
public datasets, though future work could explore on-device fine-
tuning to preserve user privacy. For the In-the-Wild dataset, we 
report weighted-F1 scores evaluated in a P-LOPO protocol, aligning 
with the evaluation protocol from Bhattacharya et al. [8]. We also 
compare processing times, measured on an Apple Watch Series 7 
(45mm), which reflects the total time to process a single window of 
audio and IMU data, from log-mel generation to prediction. 

On the SAMoSA dataset, we compare with the authors’ pre-
trained model configured for 1 kHz audio and 50 Hz motion data, 
matching their primary evaluation setup. We compute the context-
wise accuracy defined as the average classification accuracy across 
four contexts: kitchen, bathroom, workshop, and miscellaneous. 
WatchHAR achieves slightly higher (92.34% vs 92.2%) context-wise 
accuracy with 47× lower computational cost (0.036 GFLOPs vs 1.71 
GFLOPs) and 5× faster processing time (11.8 ms vs 56.4 ms). 

On the Semi-Naturalistic dataset, we reproduced the best per-
forming architecture from their paper. CNN14 [16] for audio and 
Attend&Discriminate [1] for IMU with concatenation late fusion 
method, since no pretrained model was provided. WatchHAR achieves 
slightly better LOPO accuracy (90.4% vs 89.7%) and comparable P-
LOPO accuracy (93.8% vs 94.3%), while requiring 11× fewer FLOPs 
(0.917 GFLOPs vs 4.24 GFLOPs) and achieving 6× faster inference 
time (71.1 ms vs 438.3 ms). Note that our FLOPs increased from the 
SAMoSA dataset (0.036 GFLOPs) to the Semi-Naturalistic dataset 
(0.917 GFLOPs) due to adjusting our CNN2D IMU encoder to han-
dle the longer 10-second input windows compared to 1-second 
windows used for SAMoSA dataset. 

On the In-the-Wild dataset, we followed Bhattacharya et al.’s 
evaluation protocol: WatchHAR was first pretrained using the Semi-
Naturalistic dataset and then fine-tuned with within-session data, 
leading to a personalized leave-one-participant-out (P-LOPO) eval-
uation. Similar to Bhattacharya et al., we augmented the training 
data with Semi-Naturalistic samples to address class imbalance and 
missing labels. WatchHAR achieves higher weighted F1 scores com-
pared to Bhattacharya et al. (56.7% vs 55.8%). This drop in accuracy 
– relative to those achieved on the Semi-Naturalistic dataset (over 
90%) – are expected, as the In-the-Wild dataset contains noisier 
ground truth labels due to limitations in the video-based annota-
tion system used during data collection. Despite these challenges, 
our system achieves a higher F1 score while requiring 11× lower 
computational cost. WatchHAR, without any per-user fine-tuning 
and using only the model trained on the Semi-Naturalistic dataset, 
obtains a weighted F1 score of 28.5 compared to 26.8 from Bhat-
tacharya et al. [8]. 

We refer readers to the Appendix for per-activity confusion ma-
trices on the SAMoSA, Semi-Naturalistic, and In-the-Wild dataset 
across each activity context. All our models, code, and evaluation 
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Table 2: Multimodal Activity Classification across different approaches and datasets. For SAMoSA & Semi-Naturalistic, their 
evaluation metrics are LOPO or P-LOPO. Their values are classification accuracies (%). Note, for In-the-Wild dataset, their 
evaluation metrics are weighted F1 scores. 

Model Name Dataset Sampling Rate (kHz) LOPO P-LOPO Processing Time (ms) FLOPs (G) 

SAMoSA SAMoSA 1 92.2 N/A 56.4 1.71 
WatchHAR SAMoSA 1 92.34 N/A 11.8 0.036 

Bhattacharya et al. Semi-Naturalistic 22.05 89.7 94.3 438.3 4.24 
WatchHAR Semi-Naturalistic 22.05 90.4 93.8 71.1 0.917 

Bhattacharya et al. In-the-Wild 22.05 N/A 55.8 438.3 4.24 
WatchHAR In-the-Wild 22.05 N/A 56.7 71.1 0.917 

scripts are publicly available at https://github.com/SPICExLAB/ 
WatchHAR to foster community use and adoption. 

6 Ablation Study 
We analyze how different architectural choices affect the accu-
racy and computational complexity through an ablation on the 
Semi-Naturalistic dataset. We explore performance-efficiency trade-
offs across different pretrained audio backbone models, IMU en-
coder architectures, and multimodal feature fusion techniques. 
Model variants are trained and evaluated using the protocols out-
lined in Sections 3.2 and 5.2, respectively. Additionally, we report 
model size and computational cost (FLOPs) to assess their suitability 
for on-device applications. 

We evaluated four publicly available pretrained audio encoders 
— CNN14, ResNet-22, MobileNetV1, and our choice of MobileNetV3 
— all pretrained on AudioSet [16]. Of note, we excluded the pre-
trained VGGish model used in SAMoSA as it is hard-coded for 96×64 
spectrogram inputs, making it incompatible with the 690×64 dimen-
sions of the Semi-Naturalistic dataset. As Table 3 shows, ResNet-22 
yields the highest LOPO score (79.8%), but MobileNetV3 attains the 
best P-LOPO (86.7%) while being ∼30× smaller and ∼13× lighter in 
FLOPs. 

We also evaluated four IMU backbone architectures: CNN1D 
from SAMoSA [19], DeepConvLSTM [21], Attend&Discriminate 
[1], and our choice of CNN2D [21]. Unlike the audio encoders, all 
IMU encoders were initialized from scratch. As shown in Table 
4, Attend&Discriminate achieved the highest P-LOPO accuracy 
(90.8%), consistent with prior results from Bhattacharya et al. [8], 
while our CNN2D achieved the best LOPO performance (85.5%) 
with the lowest computational cost (0.13 GFLOPs). 

Finally, we reproduced the three late-fusion schemes proposed 
by Bhattacharya et al.[8]: (1) simple concatenation of modality 
embeddings, (2) cross-modal self-attention, and (3) softmax aver-
aging of independent classifications. We compare these schemes 
with our gated-fusion method, which adds small gated block that 
learns per-sample modality weights. As shown in Table 5, softmax 
averaging achieved the highest LOPO accuracy (90.5%) but lower 
P-LOPO performance (92.8%). Our gated-fusion approach nearly 
matched the LOPO score while improving P-LOPO accuracy to 
93.8%, with minimal computational overhead (<0.5M parameters, 

negligible FLOPs increase). These results demonstrate that our fu-
sion method particularly excels when user-specific data is available 
for fine-tuning. 

Model LOPO P-LOPO Params (M) FLOPs (G) 
CNN14 74.5 82.4 80.80 14.54 
ResNet-22 79.8 86.5 63.73 10.36 
MobileNetV1 77.8 85.5 5.36 1.25 
MobileNetV3 77.8 86.7 2.19 0.79 

Table 3: Audio Model Ablation Study Results. 

Model LOPO P-LOPO Params (M) FLOPs (G) 
DeepConvLSTM 72.0 77.1 0.72 0.19 
CNN1D 75.9 80.4 246.80 0.56 
Attend&Discriminate 84.0 90.8 0.97 0.35 
CNN2D 85.5 89.0 4.57 0.13 

Table 4: IMU Model Ablation Study Results. 

Fusion Method LOPO P-LOPO Params (M) FLOPs (G) 
Concatenation 89.4 93.2 6.76 0.917 
Self-Attention 89.8 93.3 8.53 0.918 
Softmax Averaging 90.5 92.8 6.76 0.917 
Gated Fusion 90.4 93.8 7.18 0.917 

Table 5: Multimodal Fusion Ablation Study results. 

7 Application Scenarios 
WatchHAR broadens the scope of activity recognition by running 
entirely on-device, enabling real-time, privacy-preserving, and on-
the-go applications across diverse application domains (Figure 4). 
For instance, it can be used for behavioral intervention. WatchHAR 
can instantly recognize gestures such as nail biting, delivering a gen-
tle vibration, logging the event, or prompting a brief intervention 
- supporting real-time behavior change without external devices 
[22]. 

It can also be used for worker safety in factory settings. Manual 
tasks in industrial settings – such as drilling, lifting, or assembly – 

392

https://github.com/SPICExLAB/WatchHAR
https://github.com/SPICExLAB/WatchHAR


WatchHAR: Real-time On-device Human Activity Recognition System for Smartwatches ICMI ’25, October 13–17, 2025, Canberra, ACT, Australia 

Figure 4: Illustrations of four representative application scenarios enabled by WatchHAR. Left→right: Behavior Interven-
tion—recognition of nail-biting triggers haptic nudges; Worker Safety—real-time detection of over-the-shoulder lifting issues 
on-the-spot warnings; Elder Care—the watch tracks cough frequency and summarizes trends for clinicians or family; Lifestyle 
Tracking—an on-device diary reports time spent on daily activities, giving users actionable insights without exporting raw data. 

produce distinctive motion and audio patterns. Early systems rec-
ognized these patterns using body-worn sensors [24], but required 
specialized hardware and offline processing. WatchHAR brings 
these capabilities to scale using only off-the-shelf smartwatches, 
enabling real-time procedure tracking, automated task logging, and 
alerts for high-risk movements like over-the-shoulder lifts. 

WatchHAR can also be used for health sensing and elder care. By 
monitoring daily motion profiles [25] for actions such as walking, 
dressing, or coughing entirely on the device, it can passively track 
digital health biomarkers over time. Similarly, it can be used to turn 
raw sensor data into a daily activity journal [10] - capturing time 
spent in daily activities such as cooking, cleaning, exercising, and 
many more - supporting actionable lifestyle insights [23]. 

8 Limitations and future work 
While WatchHAR demonstrates significant advancements in on-
device human activity recognition, our approach has several limita-
tions that present opportunities for future research. 

First, watchOS offers limited access to microphone sampling 
rate adjustments and fails to provide fine-grained battery usage 
metrics for third-party apps. In practice, this means we cannot 
precisely adjust the sampling frequency based on energy availability. 
Addressing these constraints may require kernel-level modifications 
or leveraging the latest hardware releases, which might include 
more efficient microphone interfaces or battery optimization APIs. 

In addition, although the current WatchHAR model is effective, 
it may not be fully optimized for the computational constraints of 
smartwatch hardware. Users with older devices may experience 
slower inference and increased battery drain due to limited process-
ing power, while newer models often include hardware accelerators 
– such as Neural Processing Units (NPUs) in recent Apple devices 
– that can significantly improve energy efficiency when properly 
leveraged. In practical scenarios, energy efficiency could be im-
proved by enabling the model to reduce sampling rates, generate 
fewer predictions, or skip sensor readings during periods of low 
activity, such as sitting or resting. 

Finally – and most importantly – our current evaluation lacks a 
longitudinal study to assess the model’s performance over extended 
periods and in diverse real-world situations. Similar to prior works, 

our accuracies see a severe performance degradation going from 
semi-controlled datasets to in-the-wild datasets. Since the model can 
now run on-device, future work should plan passive data collection 
studies over multiple days—or even weeks or months. A user study 
focused on long-term use would not only validate the system’s 
sustained accuracy but also reveal new opportunities for dataset 
collection, applications, and personalization. 

9 Safe and Responsible Innovation Statement 
WatchHAR performs all inference on-device, so raw audio and IMU 
stay on the watch, eliminating server-side leakage risks. We train 
and evaluate solely on previously published, consented datasets 
(SAMoSA, Semi-Naturalistic, In-the-Wild) and will release code, 
weights, and evaluation scripts to foster reproducibility. Because 
dataset demographics are limited, we report per-dataset results 
to reveal potential bias and encourage future work on broader 
populations. Public releases must preserve our privacy-by-design 
constraint: no data storage or export for secondary purposes. We 
see no foreseeable harms but will address any reports of misuse 
promptly. 

10 Conclusion 
WatchHAR represents a significant leap forward in on-device hu-
man activity recognition on smartwatches for activities of daily 
living. By successfully implementing a multimodal system that pro-
cesses both IMU and audio data entirely on-device with a novel 
end-to-end differentiable preprocessing plus inference pipeline, 
we have addressed key challenges in privacy, latency, and power 
efficiency that have long hindered the widespread adoption of con-
tinuous activity tracking. Our system’s ability to maintain high 
accuracy across a diverse range of activities while operating in 
real-time on commodity smartwatch hardware demonstrates the vi-
ability of edge-based HAR solutions. Our implementation and demo 
application are openly available at https://github.com/SPICExLAB/ 
WatchHAR, paving the way for further research and development 
in this field, potentially leading to new applications in health moni-
toring, context-aware computing, and personal analytics. 
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