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Figure 1: Our application runs in real-time directly on a smartwatch, detecting and classifying human activities. The system
first uses IMU data to detect the presence of an event. Once an event is detected, it triggers a multimodal activity classifier that
activates the microphones and uses both IMU and audio data to classify the activity.

Abstract

Despite advances in practical and multimodal fine-grained Hu-
man Activity Recognition (HAR), a system that runs entirely on
smartwatches in unconstrained environments remains elusive. We
present WatchHAR, an audio and inertial-based HAR system that
operates fully on smartwatches, addressing privacy and latency
issues associated with external data processing. By optimizing each
component of the pipeline, WatchHAR achieves compounding per-
formance gains. We introduce a novel architecture that unifies
sensor data preprocessing and inference into an end-to-end train-
able module, achieving 5x faster processing while maintaining over
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90% accuracy across more than 25 activity classes. WatchHAR out-
performs state-of-the-art models for event detection and activity
classification while running directly on the smartwatch, achiev-
ing 9.3 ms processing time for activity event detection and 11.8 ms
for multimodal activity classification. This research advances on-
device activity recognition, realizing smartwatches’ potential as
standalone, privacy-aware, and minimally-invasive continuous ac-
tivity tracking devices.

CCS Concepts

« Human-centered computing — Ubiquitous and mobile com-
puting systems and tools; « Applied computing — Health in-
formatics.

Keywords

Smartwatches, On-device processing, Real-time mobile sensing,
Human activity recognition, Privacy aware sensing
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1 Introduction

Human Activity Recognition (HAR) has become a cornerstone of
ubiquitous computing, with applications ranging from health mon-
itoring and context-aware services to assistive technologies for
people who are deaf or hard of hearing. While significant strides
have been made in developing accurate and robust HAR systems for
Activities of Daily Living (ADL), a persistent challenge has been cre-
ating solutions that are both practical for everyday use and capable
of operating in unconstrained environments. Smartwatches, with
their array of sensors and constant proximity to users, present an
ideal platform for HAR. However, most current smartwatch-based
sensing systems rely on external data processing, raising concerns
about privacy, latency, and the need for constant connectivity to
remote machines to offload compute [2, 6, 8, 19].

On-device processing directly addresses these concerns by en-
suring real-time feedback and safeguarding sensitive information.
For example, workers in construction or manufacturing often oper-
ate in areas with limited connectivity; delayed notifications due to
reliance on remote servers can undermine safety or productivity.
Similarly, elder-care systems require continuous tracking to detect
emergencies in real-time. In such cases, offloading sensitive health
data to external infrastructure not only risks privacy breaches but
also increases response latency.

WatchHAR addresses these challenges by introducing a novel
HAR system that operates entirely on smartwatches, leveraging
both audio and inertial data (Figure 2). We chose IMU and audio sen-
sors as they are universally available on smartwatches and provide
complementary information — audio provides distinctive signatures
for audible activities but is power-intensive, while IMUs are light-
weight and can capture fine-grained hand movements but produce
less distinct signals. By eliminating the need for external data pro-
cessing, WatchHAR enhances privacy and reduces latency while
maintaining high accuracy across a wide range of activities. The
system employs a two-stage approach: a lightweight IMU-based ac-
tivity detector that triggers a more resource-intensive multimodal
classifier only when necessary. This strategy optimizes power con-
sumption without sacrificing performance (Section 3.1). This is
enabled by WatchHAR’s end-to-end trainable preprocessing mod-
ule, which applies a Short-Time Fourier Transform (STFT) and
approximates a mel-filter bank as a 1D convolutional operation that
runs efficiently on mobile neural processors.

Through careful optimization of each component of the pipeline,
WatchHAR achieves compounding performance gains. The system
outperforms the latest models for event detection (by 5.5%, Table 1)
and even achieves modest improvements in activity classification
(by 0.7%) while running entirely on the smartwatch, with process-
ing times of 9.3 ms for activity detection and 11.8 ms for multimodal
classification. WatchHAR’s novel architecture unifies sensor data
preprocessing and inference into a single, trainable module, provid-
ing a 5x performance boost while maintaining over 90% accuracy
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Figure 2: Our WatchHAR system running in real-time on an
Apple Watch Series 7 (45mm), demonstrating activity recog-
nition across four different contexts: brushing hair, hammer-
ing, washing dishes, and clapping.

across more than 25 activity classes. These advancements demon-
strate WatchHAR’s potential to revolutionize on-device activity
recognition, realizing the full potential of smartwatches as stan-
dalone devices with minimally invasive activity tracking.

Our main contributions are:

(1) A complete multimodal HAR system running entirely on
commodity smartwatches with real-time performance (9.3 ms event
detection, 11.8 ms activity classification);

(2) An end-to-end trainable audio preprocessing module inte-
grating STFT and mel-filter banks directly into the neural network
for efficient on-device execution;

(3) Comprehensive evaluation demonstrating 5x faster process-
ing and 5-47x lower computational cost (FLOPs) than state-of-the-
art while maintaining competitive accuracys;

(4) Open-source implementation, models, and evaluation scripts
to foster reproducibility and community adoption .

2 Related Work

Human Activity Recognition (HAR) has seen significant advance-
ments in recent years, particularly in the domain of wearable tech-
nology. A wide range of wearable devices have been explored for
HAR, including wrist-worn sensors [3, 4, 18, 20], smart rings [26],
earbuds [28], and smartwatches [8, 9, 17, 19, 27]. These devices
have proven effective in identifying various activities, from fitness
exercises to daily tasks.

Smartwatches, housing a rich collection of sensors including
IMUs and microphones, have proven highly effective for activity
recognition in everyday settings. For example, SAMoSA [19] and
Bhattacharya et al. [8] highlight the benefits of combining audio
and IMU data. SAMoSA achieved 92.2% accuracy across various
contexts using 1kHz audio and 50Hz IMU data, demonstrating
that even lower-sampled audio can enhance activity recognition
while preserving privacy. They proposed an IMU-based activity
detector that activates the microphone only upon detecting an ac-
tivity, enabling efficient multimodal classification. Bhattacharya
et al. [8] showcased robust multimodal sensor fusion techniques,

!https://github.com/SPICEXLAB/WatchHAR
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performing well in both controlled and real-world scenarios. De-
spite these advancements, most systems treat smartwatches merely
as data collectors and offload processing to smartphones or desk-
tops [8, 19, 26, 27]. This approach, while computationally effective,
compromises privacy and real-time responsiveness.

Some efforts have been made towards on-device processing,
such as Kim et al’s [15] exercise monitoring system using natural
magnetism in exercise equipment, and Zhang et al’s [28] cough
detection system that uses IMU sensor values to activate cough
detection. Kunwar et al. [17] also explored robust and deployable
gesture recognition for smartwatches. However, these solutions
primarily target a limited range of classes and utilize IMU data,
avoiding the power-hungry and computationally intensive audio
processing despite its rich contextual information.

The key challenge lies in developing a system that can lever-
age the rich information from both audio and IMU sensors to
support the fidelity of HAR while operating entirely on resource-
constrained wearable devices. This requires not only efficient algo-
rithms but also novel approaches to sensor data processing, gating
and fusion. WatchHAR overcomes these challenges by implement-
ing a 1D convolution approach for generating log-mel spectrograms
and combining it with efficient convolutional classifier architec-
tures, allowing the model to run on smartwatch neural accelerators
in real-time.

3 Model Architecture

Building upon prior work, SAMoSA[19], which introduced the con-
cepts of the IMU Event Detector and Multimodal Activity Classifier,
we have significantly improved the model architecture to optimize
for on-device application. Our system architecture maintains these
two core components while balancing computational efficiency and
power consumption for real-time activity recognition on smart-
watches (Figure 3).

To ensure our system runs efficiently on smartwatches, we im-
plement several optimization techniques on the trained models. We
first traced our PyTorch models using torch jit.trace with example
tensors matching our expected input shapes with batch size 1 for
simulating real-time inference. This intermediate representation
was then converted to CoreML [5] for optimized execution on Apple
Watch hardware. We apply 16-bit float quantization, which halves
the model size and improves inference speed with no impact on ac-
curacy. All inference runs on the Apple Watch Series 7 (45mm) GPU
via CoreML for optimal performance. We carefully tune the window
sizes and hop lengths for both the event detector and classifier to
balance between accuracy, latency, and computational load. These
optimizations enable our system to run in real-time on commodity
smartwatch hardware while maintaining high accuracy across a
wide range of activities.

3.1 IMU-Only Event Detector

We use a lightweight IMU-based event detector to trigger the more
resource-intensive multimodal classifier. Our detector uses a 1D
depthwise Convolutional Neural Network (CNN) architecture [12],
processing 3-second windows of 6-axis IMU data (3-axis accelerom-
eter and 3-axis gyroscope) sampled at 50 Hz. The model consists of
four convolutional blocks with increasing filter counts (64 to 128)
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and decreasing kernel sizes (10 to 5), interspersed with max pooling
layers, followed by fully connected layers (512, 256, 128 nodes) and
a final sigmoid output for binary event detection (activity detected
or not).

To ensure rapid detection of event onset while minimizing false
positives from small motions, we use a 3-second rolling window
with a 20 ms hop length and apply a 2-second moving average to
filter out spurious detections. Our system uses a two-stage detection
process to balance performance and power consumption. The IMU-
Only Event Detector continuously monitors for the presence of an
event and triggers the Multimodal Activity Classifier, activating
the microphone, only when an event is detected. Otherwise, the
microphone remains off, conserving energy during idle periods.

3.2 Multimodal Activity Classification

Our Multimodal Activity Classifier (Figure 3) processes both IMU
and audio data to achieve high-accuracy activity recognition. Since
audio adds a significant computational overhead, we use shorter
window sizes to enable faster processing and reduce latency. Both
IMU and audio data use 1-second windows with a 20 ms hop length,
allowing for fine-grained temporal resolution in our classifications.

We implement an end-to-end trainable audio preprocessing mod-
ule directly within our neural network [11]. Our architecture con-
sists of three main components: a Short-Time Fourier Transform
(STFT) implemented using a 1D convolutional layer, a mel-filter
bank designed as a trainable linear layer, and an amplitude-to-DB
conversion using a logarithmic activation function. The STFT layer
uses two separate convolutions for the real and imaginary parts,
with kernel size corresponding to the FFT size and stride deter-
mining the hop length. The mel-filter bank layer is initialized with
triangular mel filters but remains trainable, potentially learning
optimized filter banks for our specific human activity recognition
task. This is key, as filters suited for HAR may differ greatly from
those originally designed for speech recognition tasks. Lastly, the
amplitude-to-DB conversion uses a logarithmic activation function
to produce a spectrogram that is then passed to the audio feature
encoder.

For the audio encoder, we use a MobileNetV3 [14] backbone pre-
trained on the AudioSet dataset [13], without any platform-specific
modifications. This choice offers a good balance between model
size, computational efficiency, and accuracy. The MobileNetV3 ar-
chitecture incorporates inverted residual blocks with squeeze-and-
excitation modules, platform-aware neural architecture search for
optimized layer design, and efficient last-stage design for classifica-
tion tasks.

For the IMU encoder, we adopt the ConvBoost architecture [21].
This model uses a standard 3-layer 2D CNN structure optimized for
efficient processing of multivariate time series data such as IMU
signals. Each layer uses 5x1 kernels to extract temporal features,
with max pooling applied after the first two convolutional layers.
ReLU activations are used throughout the network for non-linearity.
The classifier consists of two fully connected layers with dropout
(p = 0.5) regularization to prevent overfitting. This architecture pri-
oritizes simplicity and computational efficiency while maintaining
effective feature extraction for human activity recognition tasks.
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Figure 3: Overview of WatchHAR’s Multimodal Activity Classifier. The model processes 1-second windows of raw audio and
6-axis IMU data to predict activities. Audio preprocessing is integrated directly into the neural network as trainable layers.

To effectively combine information from IMU and audio modal-
ities, we implement a Gated Fusion mechanism [7] rather than
simple feature concatenation. Both IMU and audio embeddings are
first projected into a shared 256-dimensional space using separate
linear layers. Each projected embedding is then passed through its
own gating network — a linear layer followed by a sigmoid activa-
tion — that produces a vector of weights between 0 and 1. These
weights are applied to the projected features through element-wise
multiplication, effectively scaling each feature dimension by its
learned importance. The gated IMU and audio features are then
summed together and passed through an additional linear layer to
produce the final 256-dimensional fused representation. This fused
vector is then passed through a final classifier head to predict class
probabilities. All components are fully differentiable and jointly
trained with the rest of the model.

The gated fusion mechanism is trained end-to-end with binary
cross-entropy loss, learning to weight modalities based on their
relevance to each activity. This approach is particularly effective in
the P-LOPO setting (Section 6) where some personalization data is
available for user adaptation.

4 Datasets

To train and evaluate WatchHAR, we utilize the following publicly
available smartwatch datasets, which were collected in previous
studies.

SAMOoSA Dataset [19]: The SAMoSA dataset was collected from
20 participants (mean age 23.3, all right-handed) across 60 diverse
environments. Data was recorded using a Fossil Gen 5 smartwatch,
capturing synchronized 9-axis IMU data (accelerometer, gyroscope,
and orientation) at 50 Hz and uncompressed audio at 16 kHz, later
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post-processed to 1 kHz for privacy preservation. The dataset in-
cludes 26 activities performed in four contexts: kitchen, bathroom,
workshop, and miscellaneous. Each participant performed every
activity three times per context, resulting in 14.2 hours of data in
total — 5.9 hours of labeled activity data and 8.3 hours of transition
(“Other") data. All activities were performed in participants’ homes
using their own appliances and tools, naturally incorporating am-
bient background noise. This dataset is used to train and evaluate
both activity detection and classification.

Semi-Naturalistic and In-the-Wild Dataset [8]: We used two
complementary datasets from Bhattacharya et al’s work. First, the
Semi-Naturalistic dataset was collected from 15 participants (9
female, 6 male, mean age 43.6), representing diverse professional
and socioeconomic backgrounds. Data was captured using a Fossil
Gen 4 smartwatch, recording accelerometer and gyroscope data
at 50 Hz, and audio data at 22.05 kHz. Participants performed 23
activities twice across two sessions, with each activity lasting a
minimum of 30 seconds. Data collection was conducted remotely
via video calls, and participants knocked on a surface to mark
the start and end of activities. Continuous recordings captured all
activities, including in-between movements, and manual annotation
was performed using sensor data and video footage.

In addition, an In-the-Wild dataset was gathered from five ad-
ditional participants (4 males, 1 female, mean age 27). These partici-
pants wore the same smartwatch alongside a smartphone mounted
on their chest, which captured 25-second egocentric video clips
every minute using a dedicated mobile application. Data collection
for the in-the-wild study was performed without any predefined ac-
tivity scripts, allowing participants to engage in their daily routines
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Table 1: Event Detection Model Performance Comparison between SAMoSA and WatchHAR on Apple Watch Series 7

F1score (%) Processing Time (ms) Onset Latency (sec) Offset Latency (sec)

Method
SAMoSA [IMU @ 50 Hz] 88.0
WatchHAR [IMU @ 50 Hz] 93.5

55.4
9.3

0.62
0.27

0.16
0.07

naturally over two separate sessions each, totaling 10 in-the-wild
sessions.

5 Evaluation

We evaluate WatchHAR’s performance against prior smartwatch-
based approaches, focusing on aspects critical for real-time appli-
cations: processing time, model size, and accuracy across different
settings. All models were implemented using PyTorch version 2.1.2
and converted to CoreML format using coremltools version 7.1 with
float16 quantization for running on Apple Devices. Converting 32-
bit models to 16-bit had no impact on accuracy while halving the
model size. On-device performance evaluations were conducted
using an Apple Watch Series 7 (45mm) GPU via CoreML library.

5.1 IMU-Only Event Detector

We compare our Depthwise CNN1D Event Detection Model with
SAMoSA’s Random Forest event detection model, as shown in Table
1. WatchHAR outperforms SAMoSA across all metrics, achieving
higher F1 scores (93.5% vs. 88.0%). As noted in Section 3.1, to ad-
dress potential mispredictions due to data skewness, we applied a
2-second moving average to the output probabilities, smoothing
predictions and reducing spurious outputs. This improved our F1
score from 92.5% to 93.5% with negligible computational overhead.

Compared to SAMoSA, WatchHAR demonstrates significantly
faster processing times (9.3 ms vs. 55.4 ms)?. Processing time in-
cludes data preprocessing and model inference for a single IMU
window. WatchHAR’s processing efficiency stems from streamlined
GPU feature computation. SAMoSA calculates eight statistical fea-
tures — mean, standard deviation, max, min, median, variance, skew-
ness, and kurtosis - for each of the nine IMU values, requiring 28.76
ms on the Apple Watch Series 7 (45mm). In contrast, our 1D CNN
only normalizes raw IMU data, completing in just 3 ms. We also
measured onset latency (i.e., the delay between the physical start of
an event and its detection by the model) and offset latency (i.e., the
delay in detecting the end of an event). WatchHAR achieves lower
onset (0.27s vs 0.62s) and offset (0.07s vs 0.16s) latencies compared
to SAMoSA.

5.2 Multimodal Activity Classification

We compare our Multimodal Activity Classifier with two prior
works, SAMoSA [19] and Bhattacharya et al. [8] on their respec-
tive datasets, as summarized in Table 2. All models were evaluated
using a leave-one-participant-out (LOPO) cross-validation scheme
or Personalized-LOPO (P-LOPO), which incorporates a subset of

2SAMOoSA originally reported 4.8 ms on MacBook Air (M1). We measured both methods
on Apple Watch Series 7 (45mm) for fair comparison. WatchHAR’s event detector
inference time is 2.1 ms on M1 hardware
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test participants’ data during training to simulate partial personal-
ization. In our P-LOPO evaluation, we use personalized data from
public datasets, though future work could explore on-device fine-
tuning to preserve user privacy. For the In-the-Wild dataset, we
report weighted-F1 scores evaluated in a P-LOPO protocol, aligning
with the evaluation protocol from Bhattacharya et al. [8]. We also
compare processing times, measured on an Apple Watch Series 7
(45mm), which reflects the total time to process a single window of
audio and IMU data, from log-mel generation to prediction.

On the SAMoSA dataset, we compare with the authors’ pre-
trained model configured for 1 kHz audio and 50 Hz motion data,
matching their primary evaluation setup. We compute the context-
wise accuracy defined as the average classification accuracy across
four contexts: kitchen, bathroom, workshop, and miscellaneous.
WatchHAR achieves slightly higher (92.34% vs 92.2%) context-wise
accuracy with 47X lower computational cost (0.036 GFLOPs vs 1.71
GFLOPs) and 5x faster processing time (11.8 ms vs 56.4 ms).

On the Semi-Naturalistic dataset, we reproduced the best per-
forming architecture from their paper. CNN14 [16] for audio and
Attend&Discriminate [1] for IMU with concatenation late fusion
method, since no pretrained model was provided. WatchHAR achieves
slightly better LOPO accuracy (90.4% vs 89.7%) and comparable P-
LOPO accuracy (93.8% vs 94.3%), while requiring 11X fewer FLOPs
(0.917 GFLOPs vs 4.24 GFLOPs) and achieving 6X faster inference
time (71.1 ms vs 438.3 ms). Note that our FLOPs increased from the
SAMoSA dataset (0.036 GFLOPs) to the Semi-Naturalistic dataset
(0.917 GFLOPs) due to adjusting our CNN2D IMU encoder to han-
dle the longer 10-second input windows compared to 1-second
windows used for SAMoSA dataset.

On the In-the-Wild dataset, we followed Bhattacharya et al’s
evaluation protocol: WatchHAR was first pretrained using the Semi-
Naturalistic dataset and then fine-tuned with within-session data,
leading to a personalized leave-one-participant-out (P-LOPO) eval-
uation. Similar to Bhattacharya et al., we augmented the training
data with Semi-Naturalistic samples to address class imbalance and
missing labels. WatchHAR achieves higher weighted F1 scores com-
pared to Bhattacharya et al. (56.7% vs 55.8%). This drop in accuracy
- relative to those achieved on the Semi-Naturalistic dataset (over
90%) — are expected, as the In-the-Wild dataset contains noisier
ground truth labels due to limitations in the video-based annota-
tion system used during data collection. Despite these challenges,
our system achieves a higher F1 score while requiring 11x lower
computational cost. WatchHAR, without any per-user fine-tuning
and using only the model trained on the Semi-Naturalistic dataset,
obtains a weighted F1 score of 28.5 compared to 26.8 from Bhat-
tacharya et al. [8].

We refer readers to the Appendix for per-activity confusion ma-
trices on the SAMoSA, Semi-Naturalistic, and In-the-Wild dataset
across each activity context. All our models, code, and evaluation
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Table 2: Multimodal Activity Classification across different approaches and datasets. For SAMoSA & Semi-Naturalistic, their
evaluation metrics are LOPO or P-LOPO. Their values are classification accuracies (%). Note, for In-the-Wild dataset, their

evaluation metrics are weighted F1 scores.

Model Name Dataset Sampling Rate (kHz) LOPO P-LOPO Processing Time (ms) FLOPs (G)
SAMoSA SAMoSA 1 92.2 N/A 56.4 1.71
WatchHAR SAMoSA 1 92.34 N/A 11.8 0.036
Bhattacharya et al. Semi-Naturalistic 22.05 89.7 94.3 438.3 4.24
WatchHAR Semi-Naturalistic 22.05 90.4 93.8 71.1 0.917
Bhattacharya et al. In-the-Wild 22.05 N/A 55.8 438.3 4.24
WatchHAR In-the-Wild 22.05 N/A 56.7 71.1 0.917

scripts are publicly available at https://github.com/SPICEXLAB/
WatchHAR to foster community use and adoption.

6 Ablation Study

We analyze how different architectural choices affect the accu-
racy and computational complexity through an ablation on the
Semi-Naturalistic dataset. We explore performance-efficiency trade-
offs across different pretrained audio backbone models, IMU en-
coder architectures, and multimodal feature fusion techniques.
Model variants are trained and evaluated using the protocols out-
lined in Sections 3.2 and 5.2, respectively. Additionally, we report
model size and computational cost (FLOPs) to assess their suitability
for on-device applications.

We evaluated four publicly available pretrained audio encoders
— CNN14, ResNet-22, MobileNetV1, and our choice of MobileNetV3
— all pretrained on AudioSet [16]. Of note, we excluded the pre-
trained VGGish model used in SAMoSA as it is hard-coded for 96x64
spectrogram inputs, making it incompatible with the 690x64 dimen-
sions of the Semi-Naturalistic dataset. As Table 3 shows, ResNet-22
yields the highest LOPO score (79.8%), but MobileNetV3 attains the
best P-LOPO (86.7%) while being ~30x smaller and ~13X lighter in
FLOPs.

We also evaluated four IMU backbone architectures: CNN1D
from SAMoSA [19], DeepConvLSTM [21], Attend&Discriminate
[1], and our choice of CNN2D [21]. Unlike the audio encoders, all
IMU encoders were initialized from scratch. As shown in Table
4, Attend&Discriminate achieved the highest P-LOPO accuracy
(90.8%), consistent with prior results from Bhattacharya et al. [8],
while our CNN2D achieved the best LOPO performance (85.5%)
with the lowest computational cost (0.13 GFLOPs).

Finally, we reproduced the three late-fusion schemes proposed
by Bhattacharya et al.[8]: (1) simple concatenation of modality
embeddings, (2) cross-modal self-attention, and (3) softmax aver-
aging of independent classifications. We compare these schemes
with our gated-fusion method, which adds small gated block that
learns per-sample modality weights. As shown in Table 5, softmax
averaging achieved the highest LOPO accuracy (90.5%) but lower
P-LOPO performance (92.8%). Our gated-fusion approach nearly
matched the LOPO score while improving P-LOPO accuracy to
93.8%, with minimal computational overhead (<0.5M parameters,
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negligible FLOPs increase). These results demonstrate that our fu-
sion method particularly excels when user-specific data is available
for fine-tuning.

Model LOPO P-LOPO Params (M) FLOPs (G)
CNN14 74.5 82.4 80.80 14.54
ResNet-22 79.8 86.5 63.73 10.36
MobileNetV1 77.8 85.5 5.36 1.25
MobileNetV3 77.8 86.7 2.19 0.79

Table 3: Audio Model Ablation Study Results.

Model LOPO P-LOPO Params (M) FLOPs (G)
DeepConvLSTM 72.0 77.1 0.72 0.19
CNN1D 75.9 80.4 246.80 0.56
Attend&Discriminate  84.0 90.8 0.97 0.35
CNN2D 85.5 89.0 4.57 0.13
Table 4: IMU Model Ablation Study Results.

Fusion Method LOPO P-LOPO Params (M) FLOPs (G)
Concatenation 89.4 93.2 6.76 0.917
Self-Attention 89.8 93.3 8.53 0.918
Softmax Averaging  90.5 92.8 6.76 0.917
Gated Fusion 90.4 93.8 7.18 0.917

Table 5: Multimodal Fusion Ablation Study results.

7 Application Scenarios

WatchHAR broadens the scope of activity recognition by running
entirely on-device, enabling real-time, privacy-preserving, and on-
the-go applications across diverse application domains (Figure 4).
For instance, it can be used for behavioral intervention. WatchHAR
can instantly recognize gestures such as nail biting, delivering a gen-
tle vibration, logging the event, or prompting a brief intervention
- supporting real-time behavior change without external devices
[22].

It can also be used for worker safety in factory settings. Manual
tasks in industrial settings — such as drilling, lifting, or assembly -
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Figure 4: Illustrations of four representative application scenarios enabled by WatchHAR. Left—right: Behavior Interven-
tion—recognition of nail-biting triggers haptic nudges; Worker Safety—real-time detection of over-the-shoulder lifting issues
on-the-spot warnings; Elder Care—the watch tracks cough frequency and summarizes trends for clinicians or family; Lifestyle
Tracking—an on-device diary reports time spent on daily activities, giving users actionable insights without exporting raw data.

produce distinctive motion and audio patterns. Early systems rec-
ognized these patterns using body-worn sensors [24], but required
specialized hardware and offline processing. WatchHAR brings
these capabilities to scale using only off-the-shelf smartwatches,
enabling real-time procedure tracking, automated task logging, and
alerts for high-risk movements like over-the-shoulder lifts.

WatchHAR can also be used for health sensing and elder care. By
monitoring daily motion profiles [25] for actions such as walking,
dressing, or coughing entirely on the device, it can passively track
digital health biomarkers over time. Similarly, it can be used to turn
raw sensor data into a daily activity journal [10] - capturing time
spent in daily activities such as cooking, cleaning, exercising, and
many more - supporting actionable lifestyle insights [23].

8 Limitations and future work

While WatchHAR demonstrates significant advancements in on-
device human activity recognition, our approach has several limita-
tions that present opportunities for future research.

First, watchOS offers limited access to microphone sampling
rate adjustments and fails to provide fine-grained battery usage
metrics for third-party apps. In practice, this means we cannot
precisely adjust the sampling frequency based on energy availability.
Addressing these constraints may require kernel-level modifications
or leveraging the latest hardware releases, which might include
more efficient microphone interfaces or battery optimization APIs.

In addition, although the current WatchHAR model is effective,
it may not be fully optimized for the computational constraints of
smartwatch hardware. Users with older devices may experience
slower inference and increased battery drain due to limited process-
ing power, while newer models often include hardware accelerators
- such as Neural Processing Units (NPUs) in recent Apple devices
— that can significantly improve energy efficiency when properly
leveraged. In practical scenarios, energy efficiency could be im-
proved by enabling the model to reduce sampling rates, generate
fewer predictions, or skip sensor readings during periods of low
activity, such as sitting or resting.

Finally - and most importantly — our current evaluation lacks a
longitudinal study to assess the model’s performance over extended
periods and in diverse real-world situations. Similar to prior works,
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our accuracies see a severe performance degradation going from
semi-controlled datasets to in-the-wild datasets. Since the model can
now run on-device, future work should plan passive data collection
studies over multiple days—or even weeks or months. A user study
focused on long-term use would not only validate the system’s
sustained accuracy but also reveal new opportunities for dataset
collection, applications, and personalization.

9 Safe and Responsible Innovation Statement

WatchHAR performs all inference on-device, so raw audio and IMU
stay on the watch, eliminating server-side leakage risks. We train
and evaluate solely on previously published, consented datasets
(SAMoSA, Semi-Naturalistic, In-the-Wild) and will release code,
weights, and evaluation scripts to foster reproducibility. Because
dataset demographics are limited, we report per-dataset results
to reveal potential bias and encourage future work on broader
populations. Public releases must preserve our privacy-by-design
constraint: no data storage or export for secondary purposes. We
see no foreseeable harms but will address any reports of misuse
promptly.

10 Conclusion

WatchHAR represents a significant leap forward in on-device hu-
man activity recognition on smartwatches for activities of daily
living. By successfully implementing a multimodal system that pro-
cesses both IMU and audio data entirely on-device with a novel
end-to-end differentiable preprocessing plus inference pipeline,
we have addressed key challenges in privacy, latency, and power
efficiency that have long hindered the widespread adoption of con-
tinuous activity tracking. Our system’s ability to maintain high
accuracy across a diverse range of activities while operating in
real-time on commodity smartwatch hardware demonstrates the vi-
ability of edge-based HAR solutions. Our implementation and demo
application are openly available at https://github.com/SPICEXLAB/
WatchHAR, paving the way for further research and development
in this field, potentially leading to new applications in health moni-
toring, context-aware computing, and personal analytics.
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