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Figure 1: Block diagram of the TriboTouch system. The TriboTouch layer sits on top of a 2D touch sensor and display. Micro-
patterns with a pitch of 5𝜇𝑚 induce vibrations in the screen when a finger is dragged. This signal is sampled and fused with
conventional 2D touch data, then fed into a machine learning model, which makes touch predictions with a lower latency
than the touchscreen data alone.

ABSTRACT
Touchscreen tracking latency, often 80ms or more, creates a rubber-
banding effect in everyday direct manipulation tasks such as drag-
ging, scrolling, and drawing. This has been shown to decrease
system preference, user performance, and overall realism of these
interfaces. In this research, we demonstrate how the addition of
a thin, 2D micro-patterned surface with 5 micron spaced features
can be used to reduce motor-visual touchscreen latency. When a
finger, stylus, or tangible is translated across this textured surface
frictional forces induce acoustic vibrations which naturally encode
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sliding velocity. This acoustic signal is sampled at 192kHz using a
conventional audio interface pipeline with an average latency of
28ms. When fused with conventional low-speed, but high-spatial-
accuracy 2D touch position data, our machine learning model can
make accurate predictions of real time touch location.
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1 INTRODUCTION
Touchscreen technologies have made tremendous progress over the
past half century [5]. Metrics such as spatial accuracy, maximum
screen size, scratch resistance, water rejection, optical clarity, and
number of touch points tracked have steadily improved, while costs
have continued to fall. For this reason, touchscreens can be found in
domains as diverse as kitchen appliances to airplane cockpits, and
of course the ubiquitous smartphone. However, there is one met-
ric that has been notoriously stubborn to improve: touch latency.
Specifically, the motion-to-photon delay between what a finger
does and how fast coordinated graphics are drawn. Most touch-
screen systems have improved latency below the 100ms threshold
for keyboards and mice that has been the industry standard for
decades [39], yet even modern generation smartphones have drag-
ging latencies on the order of 80 ms.

This delay causes a rubber-banding effect that impacts precision
in tasks such as drawing, and, in general, breaks the realism and
responsiveness of direct manipulation interfaces [10, 23, 38]. Thus,
techniques to reduce touchscreen latency are an active area of re-
search [19, 31, 32, 36]. Many hardware and software approaches
have been proposed with varying degrees of success. Software ex-
trapolation is inherently limited by old and ambiguous positional
data, and closing the gap to zero perceptible latency with accept-
able jitter may be impossible [31]. Hardware approaches appear
more promising, but it is not trivial to simply increase system scan
rate due to factors such as sensor noise, timing constraints, data
overhead/computation, and power consumption.

In this paper, we present a new hardware+software approach
to reducing touchscreen latency. Specifically, we apply a film em-
bossed with a 2D pattern of small bumps with a pitch of 5 microns
(Figure 1). When a finger, stylus, or tangible is translated across this
patterned surface, interaction with the micro-features induces an
acoustic vibration with a fundamental frequency that directly en-
codes x and y velocities (Figure 3). This vibration is low amplitude
and, at many velocities, ultrasonic, meaning it is imperceptible to
the user. We sample this signal using a conventional audio pipeline
at 192kHz with a mean latency of 28 ms – less than half the time of
most touch pipelines. We fuse this high-bandwidth, low-latency, 1D
vibroacoustic signal with low-framerate but high-spatial-accuracy
2D touch data (Figure 1) reported by a conventional projected ca-
pacitance touchscreen (latency of 69ms). We note for the reader
that our technique could also work on resistive, self capacitive,
optical, acoustic, and a plethora of other touchscreen technologies,
but we focus on projected capacitance because of its dominance
in the touchscreen market. By fusing this multimodal data, our
machine learning model can make a more accurate prediction of
touch location than using touch alone, reducing latency from 96ms
to 16ms with mean distance error of 5.13mm.

2 RELATEDWORK
Reducing visual touchscreen latency can be complicated, as there
are many interrelated aspects of hardware and software which de-
termine overall latency. Because of this, many approaches in both
hardware and software have been explored. Additionally, touch-
screen latency affects users differently depending on the task (such

as tapping or dragging), and interface feedback type (direct or in-
direct). We review aspects of latency perception, and approaches
to reducing overall system latency, highlighting key methods and
seminal work. We also include an overview of work in the HCI
literature that uses physical patterning for touch-related input.

2.1 Latency Impact on User Experience
For decades, the general rule of thumb for graphical user interface
latency was to keep it under 100ms [39]. Traditional keyboard and
mouse GUIs, however, are indirect interfaces, and latency issues be-
came more pronounced with the advent of the direct manipulation
touchscreen. Kaaresoja and Brewster were among the first to sys-
tematically measure touchscreen visual latencies, finding latencies
on smartphones ranging from 60-210ms [24]. To answer the ques-
tion of if this level was acceptable to users, Anderson et al. studied
the effect of latency in tablet computing and found that most users
would accept latencies under 580ms, however the authors noted
that their users were quite inexperienced with the technology, and
were possibly overly positive with their judgements [2]. Ritter et al.
repeated this type of study with tapping and dragging tasks, and
found “acceptable” latencies of 300ms and 150ms respectively [46].
Regardless, users continued to show preference for lower latencies
in both studies, even down to the limits which were used (80ms
and 100ms respectively).

Ng et al. also measured common touchscreen latencies between
50-200ms, and examined latency perception psychophysically with
a system capable of 1ms latency. They found that not only could
users perceive under 10ms of latency (average latency JND of 2-
10ms), but that experiencing such low latency “broke” their per-
ception of latency, leaving them unsatisfied with higher latency
devices [38]. Later work showed that users’ performance is also
affected by latency, though performance gains do not continue
much beyond 25ms net latency for dragging tasks, or 50ms for
tapping tasks. The authors recommended 20ms as a good tradeoff
between performance, perception, and typical tasks [23]. This task
dependency was investigated further by Deber et al., who found
that latency was dramatically more noticeable in direct dragging
tasks (JND of 11ms) as opposed to the indirect dragging or direct
and indirect tapping (JNDs of 55ms, 69ms, and 96ms respectively)
[10]. For context, this implies that latency improvements of a single
display rendering frame (16.7ms on a 60Hz display) are noticeable
down to under 1 frame of delay. Stylus interactions show similar
trends to touch dragging [23, 37], though they are not entirely the
same, reinforcing that motor-visual latency perception is a complex,
task dependent problem.

Despite the fact that users can perceive very low latencies, and
that these perceptions can translate to preferences and performance,
touch latencies on commercial devices have seemingly not im-
proved in the last decade. We ran our own small study using recent
smartphone hardware. We captured 960 FPS footage of icons be-
ing dragged across the homescreen (i.e., a native app optimized by
manufacturers) and calculated the motion-to-photon latency. For
an Apple iPhone 12 (released October 2020) we measured a mean
latency of 78ms. For a Google Pixel 4A (released August 2020), we
measured a latency of 90 ms. For a Samsung S10e (released March
2019) we measured a mean latency of 77ms. While users may accept
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this level of latency in their devices, the debate still continues on
if this is really low enough, and there are calls for updated HCI
latency guidelines [3]. We take the approach that perceivable la-
tency is too much latency, and believe that moving to imperceptible
latency will improve the user experience in much the same way
as the transition to visual pixel sizes below the perceptible limit
(e.g. “retina” displays) led to a step change in display fidelity (i.e.
once users experience it, it’s hard to go back). To this end, we set
a benchmark target of reaching approximately 16ms of round trip
drag latency, or one frame update of a 60Hz screen, which is right
on the edge of perceptible latency for everyday dragging tasks.

2.2 Hardware Centric Approaches
There is an extremely broad assortment of touch tracking hard-
ware technologies, by one tally 13 categories with 38 variations
[48]. Some notable methods include: passive acoustic time-of-flight
[22, 41, 56], electric field sensing [57, 58], LIDAR [30, 40], and cam-
eras of many varieties, including visible light [25, 29, 47], infrared
[15, 51, 52], and depth [16, 54, 55]. However, capacitive [12], and
especially projected capacitive (pcap) [32, 45, 49] touchscreens have
come to dominate the market due to their robust performance, thin
construction, and multitouch capability [48].

Specific hardware attempts to reduce latency either redesign the
sensing and display platform [23, 32, 38] or add additional hard-
ware to improve performance [14, 31, 53]. Redesigned systems can
achieve motion-to-photon latencies of 1ms [10, 23, 38] or, in special
cases of a FDM pcap device, 150𝜇s [32]. However, these hardware
prototypes use custom hardware, firmware, and software stacks,
and are primarily intended to test the limits of latency percep-
tion. Add-on hardware systems have included finger-worn IMUs,
[14, 31], as well as external high speed cameras viewing the ballistic
trajectory of finger inputs [53]. While there is work using tribo-
electrification (electric charge generation from friction) for touch
sensing [27], there have been no reports in the literature of using
friction induced vibration for touch tracking.

2.3 Software Centric Approaches
Software based approaches to reducing latency are more limited
in their scope. Since they must deal with inherently slow hard-
ware, they rely on tracking finger trajectories and making forward
predictions (sometimes nearly 100ms in the future). Cattan et al.
studied software corrected latencies with a simple linear predictor
model, making predictions between 25ms and 75ms into the future
[7, 8]. They found that errors dramatically increased with forward
prediction time, especially overshoot, which negatively impacted
user’s preference and performance. Importantly, they highlight that
software prediction is unable to account for trajectories of high
acceleration, such as when the finger rapidly stops, as there is no
way of accurately predicting from an absence of data.

Henze et al. applied neural networks to the prediction problem,
trained with actual touch strokes [19]. They found that polyno-
mial fit predictions (1st, 2nd, or 3rd order) generally performed
worse than no prediction except for small latencies, but a neural
network approach was able to reduce error (by roughly 50%) and
increase user performance. This came, however, with a negative
consequence of increased prediction jitter, which was notable and

led to unpleasantness. Additional machine learning algorithmswere
subsequently evaluated [20], and it was found a LSTM approach
outperformed neural networks, or multilayer perceptrons in terms
of raw error. Work by Nancel et al. recently showcased a finite-time
approach which was found to be effective at predicting 32-48ms
ahead [36], 2-3 times longer than many published industry and
academic techniques.

We think these software approaches are promising, especially
for short term prediction (under 30ms), and it is something that
smartphonemanufacturers appear to routinely apply [36]. However,
software only implementations always show their limitations at
high velocities and large latency prediction values, and do not
seem capable of closing the gap on many systems which have total
latencies of 60-100ms. The only way around this is to either increase
the capabilities of existing hardware, or to add additional hardware.
As mentioned previously, speeding up the hardware is not always
a possibility, especially true as display size increases. Adding new
hardware, such as high speed sampling of IMUs, seems promising
at reducing error in long term prediction [31], but requiring non-
integrated hardware is a large burden on the user. It is with this
in mind that we developed the TriboTouch technique, a method
which reduces touch tracking latency with minimal hardware and
software impact to the system or user.

2.4 Uses of Patterning for Touch Interaction
Before describing TriboTouch in detail, there are a handful of
projects to mention that have utilized coarse geometry of surfaces
to enable touch input. For example, Scratch Input [17] used a con-
tact microphone in concert with unstructured textured surfaces
(e.g., wooden tables, painted walls) to enable touch gesture classi-
fication, such as swipes and circles. Rubbinput [26] is similar, but
uses the squeaking sounds produced by fingers on wet surfaces.
By decomposing and analyzing acoustic time-difference-of-arrival
signals, Pham et al. [43, 44] was able to demonstrate continuous
touch tracking.

Engineered textures are also possible, as exemplified by the Stane
[35] - a palm-sized, 3D-printed device with an internal microphone
covered in a multitude of engineered textures; the device classifies
touch input using sound produced by rubbing different regions.
Acoustic Barcodes [18] is another example of engineered surface
geometry. Much like their optical counterparts, a linear sequence
of irregularly-spaced lines are etched into a material, which pro-
duces an acoustic pattern when swiped with a finger that can be
resolved to a binary data payload. Kim et al. proposed a millimeter
scale textured surface and wrist mounted piezo as a gestural input
device [28]. To our knowledge, no work to date has investigated
using micron-scale patterning for touch input broadly, nor latency
improvements specifically.

3 TRIBOTOUCH PRINCIPLE
TriboTouch works on a principle of texture induced vibrations from
frictional interaction. When two surfaces rub together vibrations
are created which are a function of each surface’s spatial roughness
distribution and the velocity at which they are sliding. This idea
is intuitively understood by considering a zipper: The faster the
zipper is opened and closed, the higher the frequency of sound
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Figure 2: a) The patterned layer and piezo is fitted to an
LCD touchscreen; screen off (top) and with a test pattern
shown (bottom). b) Magnified image of the diffraction pat-
tern (reproduced from [9] with permission from the author).
c) a schematic device stackup showing the ordering of func-
tional layers.

that is generated. Instead of a zipper, however, our system uses
a finger or other object sliding against a micro-patterned surface.
Friction is a well known cause of a number of acoustic phenomena
[1], and in recent years the systematic variation of friction-induced
vibration of fingers against textured surfaces has been investigated
as a basis for human perception of finely textured surfaces [34, 50].
These vibrations can travel along the skin and into the body [11],
however, as we have found in our work, they readily propagate into
the surface as well. Additionally, it has become clear that texture-
elicited vibrations can carry rich information about finger sliding
speed [13]. It was with this insight in mind that we developed
TriboTouch (Tribo being short for tribology, the study of friction).

3.1 Using the Right Pattern
In order to feel a texture, the spatial features of the surface need to
be in the range of 100s of microns. This is because a 100um spaced
texture scanned at a nominal velocity of 10mm/s will produce vibra-
tions of 100Hz, which is in the range of tactile vibration perception.
For the purpose of sensing, however, we do not want the users to
be able to feel the textured pattern. Fortunately, we discovered that
the relationship between wavelength and frequency is not limited
only to widely spaced textures. By selecting surfaces with much
finer features, vibrations are produced at much higher frequencies.
This has the benefit of reducing the tactile perception of the tex-
ture while sliding, and moving the frequency into a region of the
spectra that is virtually free of acoustic noise. We have found that
the general relationship 𝑓 = 𝑣/𝜆, where 𝑓 is the vibration funda-
mental frequency, 𝑣 is the sliding velocity, and 𝜆 is the dominant
spatial wavelength, holds true even for wavelengths of down to
5𝜇𝑚 and frequencies in excess of 80 kHz. To study this effect, we
obtained holographic diffraction grating films, inexpensive films
made of UV cured epoxy on PET substrate, and laminated them to
a touchscreen. These films come in single or double axis variations,
and a microscope image of the double axis variety can be seen in
Figure 2b. We selected these films because they are pre-made and
inexpensive, but nothing precludes the use of patterns of different
spatial wavelengths or orientations.
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Figure 3: Example spectrogram plots of acoustic data com-
ing from a finger performing various gestures (down, left,
circles, and star) on our TriboTouch-enabled prototype sys-
tem. Spectral peaks encode velocity information.

3.2 Spectral Complexity
When surface vibrations are recorded with a piezoelectric disc
placed in the corner of the surface, complex and high frequency
vibrations are observed, see Figure 3. If the finger travels predomi-
nantly along the x or y axis of the diffraction grating, vibrations
are limited to a fundamental frequency and series of harmonic
vibrations. This can be seen in the vertical and horizontal finger
motions (Figure 3, down and left). As a swipe begins, the frequency
rises sharply, since the finger is accelerating. The frequency then
reaches a peak value, and begins to fall as the finger decelerates and
finally stops. If a finger follows a path with curvature, fundamental
frequencies associated with both x and y axes interchange with
one another (Figure 3, circles), and intermodulation frequencies
(sum and difference frequencies) can be observed. Swipes at off axis
angles also show complex patterns of intermodulation, as seen by
the star gesture (Figure 3, star).

3.3 Systematic Variation
We performed two experiments using a CNC platform to explore
and demonstrate the effects of velocity magnitude and angle on the
spectra of observed vibrations. A teflon coated stylus was attached
to the head of the CNC platform, and held against the surface by a
compressed spring. A picture of this setup can be seen in Figure 4b.

3.3.1 Magnitude Variation. For our magnitude experiment, we ran
the stylus inline with the horizontal x axis at 6 different velocities,
ranging from 1in/s (25mm/s) to 6in/s (152mm/s). Constant velocity
segments of 0.5s length were broken into non-overlapping windows
of 2048 samples. These windows were averaged to produce spectra
seen in Figure 4a. As can be seen in the data, changing the velocity
magnitude has the main effect of linearly translating spectra along
the frequency axis. Both the fundamental and the second harmonic
appear in the data, and scale linearly with sliding velocity (e.g.,
a fundamental peak of 5kHz at 1in/s equates to a 20kHz peak at
4in/s).

3.3.2 Angle Variation. For our angle experiment, we adjusted the
path of the stylus to coincide with 5 different angles, from 0° (inline
with the x axis) to 45°. Data was collected at constant velocity of
5in/s, and 0.75s of constant velocity data was extracted, windowed,
and averaged to produce the spectra in Figure 5a. Here the impact
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Figure 4: Spectra amplitude and frequency resulting from
a stylus dragging across the surface at different controlled
velocities. The inset figure shows example movement align-
ment with the micro-pattern (not to scale). b) Setup image
for magnitude and angle experiments, showing stylus and
display orientation to CNC head.

of angle on spectra peak is less obvious, but we present a theory
on what is happening. Essentially, there are two fundamental fre-
quencies that are produced by the stylus (and harmonics associated
with each). Each fundamental peak is associated with the x or y
axis, and how in-line the motion is with these axes. Therefore, as
the angle increases from 0° to 45°, the x axis fundamental decreases,
while the y axis fundamental increases. This can be seen in the
11.25° and 22.5° spectra, as the 26kHz peak decreases slightly, while
another peak begins to rise from 0 Hz. This trend continues un-
til the angle reaches 45°, at which point the x axis fundamental
and y axis fundamental are equal (18kHz). This is 1/

√
2 times the

original fundamental at 0°, which is the reduced linear velocity
of each axis. Beyond 45°, there is a symmetry in the spectra, as
the y axis fundamental continues to increase and the x axis funda-
mental continues to decrease. This description explains the rising
and falling frequencies seen in the circular motion of Figure 3. The
remaining peaks in the spectra can correspond to harmonics of the
fundamentals, or intermodulation frequencies (essentially sum and
difference frequencies of the fundamentals).

This angular behavior is directly due to the symmetry of the
diffraction pattern texture across the x, y, and the 45° offset axes.
This leads to an interesting phenomenon where there are angular
homophones, that is, angles that produce vibration spectra identical
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Figure 5: a) Spectra amplitude and frequency resulting from
a stylus dragging across the surface at different controlled
angles (5in/s velocity). The inset figure shows examplemove-
ment alignment with the micro-pattern (not to scale). b)
Color coded angular “homophones”, i.e., different angles
that will produce identical spectra, and a region plot show-
ing the symmetry due to the micro-pattern.

to other angles. This concept is illustrated in Figure 5b, where
each set of lines will, in theory, produce identical spectra. These
angular homophones can be separated into 8 separate regions,
where the symmetry of each region is reflected across each border,
as illustrated by the regions graph in the lower right of Figure
5b. While the separation of velocity magnitude and angle appear
straightforwardly discernible here, we stress that this waswith CNC
controlled velocities and perfectly linear trajectories, conditions
not seen with real user input. For this reason, we took a machine
learning approach to identify the most useful features for mapping
sound spectra onto x and y predicted touch positions.

4 PROTOTYPE IMPLEMENTATION
The ethos behind our system design was to add new hardware with-
out adding a large amount of engineering complexity. We chose to
use materials that are commonly available, and processing pipelines
that are well established, robust, and widely implemented. Impor-
tantly, software pipelines for sound are commonly designed for low
latency and high bandwidth, which we use to our advantage. The
hardware, while novel, is compatible with common touchscreen
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constructions and integrations, and achieves a high level of refine-
ment, even in this first prototype demonstration. We detail the
hardware implementation below.

4.1 Hardware
The hardware is centered around an open frame 10.1” touchscreen,
with a touch controller ASIC by GOODIX. The display is an IPS
LCD, with a native resolution of 1024x600 and viewing area of
223x125mm (1px≈0.21mmx0.21mm). Video is transferred viaHDMI,
while touch and power are over USB. Photos of this display can be
seen in Figures 2, 4 and 8. The visual screen has a refresh rate of 60
Hz, and the touch has a report rate of 100 Hz. The touch panel is a
traditional “out-cell” pcap design, with TX and RX lines on either
side of a sensor glass, which is then optically bonded to the LCD
on one side and a front cover glass on the other (see Figure 2c for a
complete stackup).

A 6”x5’ roll of the diffraction grating was purchased online and
cut down to rough size before being laminated to the cover glass
and trimmed. Liquid optically clear adhesive (LOCA) was used for
bonding. It was leveled with a roller by hand and cured in place
with a UV light. This is a common technique used in bonding touch
sensors to phones and tablets. The pattern spacing of 5𝜇m was
measured by shining a 532nm laser through the diffraction grating,
and measuring a separation distance of 210mm between diffraction
nodes at a distance of 2m.

A corner of the film was removed for the application of a 10mm
diameter, 0.13mm thick, brass backed piezo disc (p/n AB1070B). Be-
fore bonding the piezo to the screen, layers of copper and polyimide
tape were wrapped around it for shielding. This was found to sub-
stantially reduce noise from the touch sensor scanning. The piezo
was secured by cyanoacrylate glue (“superglue”) and the wires from
the piezo were twisted and shielded until they reached the piezo
preamplifier, seen in Figure 6.

A custom preamplifier was built for the piezo sensor (Figure 6b)
as the vibrations induced by friction are quite low amplitude, and
the piezo is in a high noise environment with interference coming
from both the touch sensor and LCD module. Nonetheless, with
basic noise mitigation techniques, low noise differential charge
signals could be read from the piezo with minimal interference. The
function of the preamplifier is to 1) buffer the high impedance of
the piezo, 2) read the piezo differentially, and convey it to the audio
ADC with a modest amount of gain (∼100-500x), and 3) integrate
the piezo charge and convert it into a voltage representing the force
applied to the piezo.

A schematic representation of a single channel of the preampli-
fier is shown in Figure 6a. It operates from a single 4.5V supply (lo-
cally regulated from a 5V USB power source), and uses a single pack-
age of two high bandwidth (GBP 22 MHz), low noise (2.9nV/rtHz)
op amps (p/n LMP7732) per channel, one for buffering/integrating
and another for additional gain and high pass filtering. Overall gain
bandwidth was found to extend beyond 100kHz, and signals are
conveyed single-endedly to the audio interface via a shielded audio
cable. There are two channels per board for additional experiments
in the future. The audio interface used is the ZOOM UAC-2 USB 3.0
device. It has a 24-bit ΔΣ ADC, and samples stereo data at 192kHz.

to ADC

Figure 6: a) Dual channel preamplifier PCBA containing
four op amps, a voltage regulator, and various passives. b)
Schematic of the main piezo front end charge amplifier. It
converts a differential charge signal into a single ended volt-
age.

As a test computer, we use an Intel NUC (2.6 GHz Core i7 6700HQ,
16GB RAM) running Windows 10.

Note, the 192kHz sampling rate of the ADC sets a theoretical
maximum velocity that this system can capture. Using the fact that
𝑣𝑚𝑎𝑥 = 𝜆𝑓𝑚𝑎𝑥 , 𝜆 = 5𝜇𝑚, and 𝑓𝑚𝑎𝑥 = 96kHz (per Nyquist), the
highest velocity than can be sensed is approximately 480 mm/s. In
practice, it’s closer to 400 mm/s, as seen later in Section 7.

4.2 Software
Data collection for the user study and experiments was centralized
in Python. Data was captured from the audio interface using the
PyAudio library, Python bindings for the cross platform C library
PortAudio. The PortAudio library provides an audio callback func-
tion which gets called every 256 samples, or approximately 1.33ms.
Data is logged at this rate, and the system cursor location is polled
to check for touchscreen updates. Touch is reported to the system
via the native USB HID driver, and it updates at 100 Hz. Audio is
delivered from USB to the PortAudio library via the ASIO4ALL 3rd
party driver, which was adjusted to have a minimal buffer size and
low latency. Various other Python libraries are used for UI and data
analysis tasks, and it was ensured that they did not interfere with
the audio callback timing. Our machine-learning-powered touch
prediction implementation is described after a discussion on latency
characterization.

4.3 Latency Characterization
We characterized the various aspects of latency in our test system
through carefully constructed experiments, and report the results
here (see also Figure 7). There are three critical latency numbers we
investigated: motion-to-reported audio, motion-to-reported touch,
and commanded-to-completed display rendering. All report laten-
cies are for dragging, not tapping (tapping latencies are generally
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Figure 7: Latency characterization of our system, with results from a latency experiment. Display, touch, and audio update
rates are shown as the time between new sampled data. Predictions are run at time 0, i.e. present time, and utilize delayed data
from the past to make predictions of the future.

higher). A finger was placed on the screen, held motionless for
a brief moment, and then quickly swiped. The piezo signal was
used to capture the start of finger motion, as acoustic vibration is
immediately produced even at very low velocities. A phototransis-
tor was used to record screen brightness as a proxy for rendering
output. We also used the sound input and output pipelines to record
critical events and line them up with the piezo and phototransistor
outputs. Data was recorded simultaneously on a 100 MHz digital
oscilloscope.

There is negligible latency of the vibration traversing the screen
or from the piezo preamplifier, so the audio input latency essentially
is the motion-to-reported audio latency. This was found by looping
the audio input in Python back to the audio output, and then sam-
pling both with the oscilloscope. This gives the round trip latency,
which we then divided by two to get the input audio latency. Mean
motion-to-audio latency was 28.2ms (SD=1.36ms, N=10). Motion-to-
touch latency is measured by pulsing the audio output as soon as a
new touch location is reported. Because we characterized the audio
output latency (equal to the audio input latency), we can simply
subtract this from the touch pulse time and get the motion-to-touch
latency. Motion-to-touch latency was 69.1ms (SD=4.30ms, N=10).
Finally, we measured the commanded-to-completed rendering la-
tency by looking at the piezo and phototransistor outputs. The
phototransistor shows the start and end of a single frame render,
and we define the completed display rendering time as the time
when the commanded output frame is fully rendered. The display
was commanded to render a single black background frame when
a new touch is detected. The commanded-to-completed display
render time is then the total piezo to phototransistor latency minus
the motion to touch latency, a mean of 27.3ms (SD=5.25ms, N=10).
These values are summarized in Figure 7.

4.4 Machine Learning
As previously noted, our system receives a new buffer of 256 sound
samples every 1.3ms (i.e., 750 Hz) via an audio callback handler.
While it is possible to run predictions at this speed, it was too taxing
for our older-generation Intel NUC and Python software stack
(we discuss possible performance improvements later). Instead, we
make predictions every other audio callback, or roughly every 2.7ms
(i.e., 375 Hz, vs. the touchscreen’s 100 Hz touch reporting rate).

Every time a prediction is triggered, we compute the magnitude
spectra of the DFT (using the FFT algorithm) for the most recent
sound buffer. This represents frequencies from 0 to 96 kHz in 750
Hz-wide bins. We discard phase information. The bin indices of the
top two peaks (using SciPy argrelextrema) are extracted as features.
We also iterate over the spectra and record the index of the two
highest magnitude bins. We compute the mean, standard deviation,
and center of the mass of the spectra as three additional high-level
descriptive features. Our software also maintains a sliding window
of the last five x, y touch locations reported by the touchscreen, as
well as a counter for the number of audio callbacks since the last
touch event, which we use as another feature. As described in Sec-
tion 3 and illustrated in Figure 5, our micro-patterned surfaces have
angular homophones, where different touch trajectories can result
in the same sound signal. To account for this and help transform
our features into a lower-dimensional representation (for easier
learning), we convert the last three touch vectors into a homophone-
normalized coordinate system (x, y components transformed into
region zero; see Figure 5). In addition to the region-zero-local x,
y components, we also record the touch vector’s original region
number (0-7) as features. We perform the same conversion on the
summed x, y vector of the last 5 touch points, producing another
three features. Finally, we compute the max x velocity and max y
velocity over the last 5 touch points.

Our 34 features (normalized by a min-max scalar) are concate-
nated into a one-dimension input vector and fed to an extra-trees
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Raw Prediction*

Smoothed Prediction*

Conventional Touch
*vertical o�set addd for illustration

Figure 8: Photo from our real time latency compensation
model. Conventional touch data is shown in red, while raw
outputs of the acoustic+touch ML model run at 375Hz are
shown in blue, and a smoothed output is shown in black. A
vertical offset of 20px was applied in y to avoid data overlap-
ping for illustration purposes.

regressor (Sklearn Ensemble ExtraTrees [42]), which takes 1.6ms
to execute on average. The output is a two-dimensional vector
containing the x, y displacement of the nth touch point (real time
latency compensation is 9 touch points ahead), which is added to
the last known touch point. At 375 touch predictions per second,
our system is over 6x faster than the refresh rate of the visual dis-
play, which means we can employ smoothing with minimal cost in
latency (not possible with conventional touchscreen events alone).
For this, we use the 1€ Filter [6] (used in prior touch prediction work
[36]) with 𝛽=0.008 and 𝑓𝑐=4 Hz. Figure 8 shows three touch paths
(offset vertically for illustration). The red dots are the touchscreen’s
reported positions at 100 Hz. Shown in blue are our system’s raw
predictions at 375 Hz, as well as their smoothed versions in black.

To train our extra trees model, we collected nine minutes of
touch input data from four users who were not participants in
our later study. Users were asked to provide strokes of varying
shapes, paths and speeds, but the task was otherwise open-ended
to capture a variety of input strokes. In total, this provided 1,137,384
sound points (with 143,450 unique touch points). For model training,
we used the mean squared error criterion and 15 estimators. We
tested several other models such as nearest neighbor regressors,
multilayer perceptrons, and support-vector machines and found
that decision trees work the best. While our random forest model
achieved similar performance on the same feature set, we ultimately
chose extra-trees due to its fast execution time.

5 USER STUDY
To evaluate the performance of our technique, we recruited 11 par-
ticipants (mean age 23.3, one left-handed) for a 30 minute study
(each paid $20 USD). Users were seated in front of our test appara-
tus and completed a series of touch input trials. We modeled our
tasks on [19], which used three input categories: drawing, writing,
and (Fitts law style) dragging. Each collection phase lasted approxi-
mately 10 minutes, with presentation order randomized. Users were
free to choose whichever finger they found most natural for input,
though they were instructed verbally not to perform overly rapid
swipes. This was to avoid velocities above 400mm/s, the practical
maximum velocity limit for our prototype sound pipeline.

In the drawing task, users were shown a piece of paper with six
exemplar shapes: square, circle, triangle, five-pointed star, house
and zig-zag. The shapes were adapted from [36]. Note that these
stimuli do not appear on the screen (which remained white), as
we did not want users to trace shapes and have uniform inputs.
To add further variability, shapes were requested in one of three
screen sections (left, center, right) and at two sizes (small and large)
using prompts at the top of the screen. Each shape, section, and
size combination was repeated three times, and trial presentation
order was fully randomized. This procedure generated a total of
108 shape trials (6 shapes x 3 section x 2 sizes x 3 repeats = 108
trials) per participant.

In the writing task, participants were shown a single word at the
top-right of the screen, which they then drew onto the display as
they saw fit. No visual feedback was given to avoid user adaptation.
Random words with more than four letters were drawn from the
[33] dataset. Each participant completed 50 writing trials.

Finally, in our Fitts-law-style dragging task, users were shown
two 1 cm squares on screen. They were asked to drag their finger
from the blue square to the black square. No visual feedback of the
path was shown, but the black square turned blue when the finger
was on top. While it might seem natural to randomly generate start
and end targets, this would almost certainly generate a diagonal line
(i.e., the probability of generating the same x’s or y’s for the two tar-
gets is very low). However, in typical smartphone use, actions such
as vertical scrolling or horizontal swiping are more common than
a diagonal translation. To capture all three movement behaviors in
a balanced way, we created three sub tasks: horizontal, vertical and
diagonal drags. Within each, 9 trials were randomly generated, at
two different lengths (4.2, 7.4 and 10.5cm) and at different locations
on the screen. This yielded 72 trials per participant. In total, across
all three tasks and 11 participants, we collected 1,869,668 sound
points (containing 300,827 unique touch points).

6 RESULTS
We report two sets of results from this study. The first set looks at
the velocity prediction power of three machine learning models,
one trained on acoustic features only, one trained on touch features
only, and one trained on both acoustic and touch features. The
second set of results looks at the mean euclidean path error of three
different prediction models (linear extrapolation, touch ML, and
acoustic+touchML) vs baseline conventional touchscreen operation.
We examined this across various amounts of compensated latency,
as well as across two different scan rates 50 Hz and 100 Hz. We
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Figure 9: Predicted velocity vs actual velocity for three ML models across all evaluation data. 𝑅2 is reported from a linear
regression, as well as the slope of the line fit. Color represents the number of predictions at a given 4mm/s x 4mm/s bin
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Figure 10: Mean Euclidean error as a function of 8 different
compensated latency values 30-100ms. Errors also shown
for 40ms and 80ms of touch predictions run at 100 Hz.

omitted every other sample in our touch data as a way of simulating
50 Hz. This was done to closely mimic the typical touch refresh rate
(60 Hz) of smartphones and tablets. In our demo systemwe compute
predictions at a rate of 375 Hz and apply a jitter filter, however, for
the purposes of this analysis, we used a common prediction rate (of
50 or 100 Hz) and testing dataset across all models for maximum
comparability.

We also use the term "compensated latency" in this section, which
is analogous to the latency compensation parameter in [36] and the
prediction parameter in [19, 31]. Put simply, this is how far into the
future the model is predicting. As a reminder, our system was mea-
sured in Section 4.3 to have a mean reported touch-to-completed
visual rendering (motion-to-photon) time of 96ms, and we set a
benchmark of completing rending within one frame (16.6ms) of
this time (a general psychophysical limit of dragging latency [10]).
This set our benchmark at 80ms of compensated latency.

6.1 Velocity Prediction
As discussed at length previously, our acoustic signal should be
descriptive of touch velocity (but somewhat oblivious to absolute
direction). As a measure of the predictive power of our models,
we plotted all of our models’ predictions versus the ground truth
velocity 80ms in the future and computed the coefficient of deter-
mination (see Figure 9). Predictions were made at a simulated rate
of 50 Hz. To aid in viewing the extremely large number of data
points, velocities were binned in widths of 4𝑚𝑚/𝑠 , and the number
of predictions per bin were logarithmically color mapped. The 𝑅2
values were 0.403, 0.505, and 0.625 respectively for acoustic, touch,
and acoustic+touch ML models.

6.2 Path Accuracy Between Methods
As another metric to evaluate our models, we calculated the mean
euclidean distance between the predicted touch x, y and the even-
tual ground truth x, y. This was done for eight compensated laten-
cies (30-100 ms) at a simulated prediction rate of 50 Hz. The baseline
"no prediction" case shows the error inherent in the device, which
leads to the so-called rubber-banding effect. The linear prediction
model is a basic model that takes the previous two touch points,
and linearly extrapolates into the future (an approach that tends
to overshoot). Our machine learning models take data from touch
only, or touch+acoustic data.

Data means are shown in Figure 10. For compensated latency
values of [30, 40, 50, 60, 70, 80, 90, 100] ms our means errors (in
mm) were [29.3, 36.7, 44.0, 51.3, 58.4, 65.4, 72.3, 79.9] (SD=[18.5, 22.7,
26.7, 30.6, 34.4, 38.1, 41.6, 45.1]) for no prediction, [11.7, 15.4, 19.9,
25,2, 31.0, 37.3, 44.1, 51.3] (SD=[9.34, 12.2, 15.6, 19.4, 23.6, 28.1, 32.8,
37.8]) for linear prediction, [9.25, 12.6, 16.3, 20.3, 24.7, 29.4, 34.4,
39.5] (SD=[7.23, 9.77, 12.5, 15.4, 18.6, 22.1, 25.5, 29.2]) for touch ML,
and [8.83, 11.9, 15.3, 19.2, 23.2, 27.7, 32.3, 37.3] (SD=[7.13, 9.54, 12.2,
15.3, 18.3, 21.6, 25.1, 28.5]) for touch+acoustic ML.
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As an additional reference, we also calculated the error values for
100 Hz predictions, the native touch report rate of our touchscreen
(but above that of any smartphone we tested), at compensated
latency values of 40 and 80 ms. The mean error (mm) for these was
[29.1, 54.4] (SD=[18.6,33.6]) for no prediction, [10.8, 30.6] (SD=[8.29,
22.7]) for linear prediction, [9.73, 25.5] (SD=[7.18, 18.2]) for touch
ML, [9.03, 24.4] (SD=[7.02, 18.6]) for touch+acoustic ML.

7 DISCUSSION
By looking at the scatter plots in Figure 9, it can be seen that our
acoustic method clearly has velocity prediction power, and that
it is similar to the predictive power of a model utilizing spatial
touch data. As a reminder, this model is only taking in 1D acoustic
data and is making a prediction of velocity magnitude. Notably,
however, our acoustic model has trouble making predictions of
velocities below around 50mm/s, and above velocities of around
400mm/s (despite there being actual velocities in this range). Con-
verting these velocities into vibration frequencies, this corresponds
to vibrations below 10kHz and above 80kHz. The lower limit aligns
with the high-pass cuttoff frequency that was designed into the
piezo-preamplifier, while the higher limit corresponds to the au-
dio interface anti-aliasing filter low pass frequency (specified -1dB
point is 60kHz). It appears that our model cannot make predictions
beyond these points, presumably as there is little input signal.

Looking at the touch only model, it has a slightly higher 𝑅2
value, and no obvious cutoff points like the acoustic only model.
The spread of predictions, however, appears wider than the acoustic
only model, despite the fact the it has direct access to touch data
during training. Looking at the acoustic+touch case, we see that
this model is able to make a more correlated prediction of velocity
magnitude than either model alone. This shows that not only is
there valuable velocity data contained in the acoustic data stream,
but that integrating this into the touch datamodel yields, on average,
an improved prediction. Qualitatively, the velocity predictions also
look more concentrated along the x=y line, something backed up
by the higher value of 𝑅2, and the fit line being more aligned with
the x=y axis.

When looking at the plot of mean errors, several trends stand
out. First, all models lead to much reduced error from the baseline.
This is actually a difference from [20], who saw the baseline out
performing the linear prediction model at high latencies (>30ms).
This studywas on an entirely different hardware and software setup,
so it is hard to directly compare, but it is notable that our metric
did not reproduce this trend. Moving to a ML model, we see similar
improvements as [19], reinforcing the ability and applicability of
machine learning to the problem of latency correction. Importantly,
we see improvement again moving from a touch only ML model to
an acoustic+touch model. The gains are modest, ranging from 4.6-
6.1% decrease in error, but they are computed across all conditions,
even at the lowest levels of compensated latency. The metric we
have selected here may be too coarse to fully express how the
addition of the acoustic data helps achieve a lower mean error, but
we take this as an encouraging sign in the potential of this technique.
Additional trends show that error increases monotonically for all
methods as compensated latency increases (as expected) and that a
higher touch rate (100 Hz vs 50 Hz) does lead to lower errors.

8 COMMERCIAL INTEGRATION
We wish to stress that this instantiation of TriboTouch is a first
prototype, meant for research purposes, and that there remains
room for improvement. As a first of its kind hardware system, we
assembled it with easily accessible parts and software libraries. In
the future, we envision a number of changes to improve system
performance, cost, reliability, and usefulness. For example, we have
already tested and confirmed that the piezo element can be inte-
grated at a different location of the device (i.e., behind the display
or on another rigid part attached to the display). This would allow
the sensor to be embedded and protected within the device itself.

We have also investigated the use of etched glass surfaces in-
stead of diffraction grating films. Commercial etched glasses are
on the market which have textural features on a similar spatial
scale as diffraction gratings. These so-called “anti-glare” cover glass
surface treatments are designed to reduce screen glare while pre-
serving high optical quality clarity and transparency (avoiding
optical “sparkle” of the display) [4, 21]. In fact, similar processes
are already available on consumer devices (such as the 2020 iMac
with “nano-textured” glass). Patterning processes are offered by
two leading glass manufacturers (Corning1 and AGC2) and are com-
patible with other “anti-fingerprint” and “anti-reflective” coatings.
These glass treatments would mean the TriboTouch layer would
be integrated into the device cover glass itself, obviating the need
of an additional layer. There are also various surface treatments
that manufacturers use on the backs and sides of their devices (e.g.
anodizing, sandblasting, or soft touch treatments) which could yield
interesting and useful frictional patterns, opening up these surfaces
for touch input.

Finally, we take advantage of the low latency in audio processing
pipelines, but we, by no means, have performed an exhaustive
optimization of audio latency. It’s not uncommon for consumer
grade hardware and software to provide latencies that are an order
of magnitude faster than what we measured (3ms instead of 30ms).
Further optimization of this pipeline can be done with additional
engineering cost and overhead, and generally requires low-level
software/hardware access typically only available to device and
component manufacturers. We note that some audio functions,
however, have already been engineered to meet some of the most
strict latency specifications.

While our current prototype is computationally expensive (run-
ning machine learning in Python on a CPU), we envision a com-
mercial implementation using dedicated embedded hardware for
prediction. This would not be very architecturally different from
how devices are designed today, with an independent touch ASIC
that interrupts the main application processor and kernel once
touch events have been sensed, processed, and filtered. Indeed, a
more computationally-capable touch controller could sample the
audio with a dedicated high speed ADC and do the sensor fusion
and prediction locally. We believe that with changes such as these,
a commercial implementation of TriboTouch is eminently feasible.

1https://corning.com/worldwide/en/innovation/materials-science/surface-
impressions.html
2https://feelinglass.eu/technical-details/
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9 LIMITATIONS & FUTUREWORK
TriboTouch is a novel technique, and though we have outlined some
paths for improvement in Section 8, there are some limitations to
discuss. First and foremost, we are adding additional hardware to
touchscreens, which means additional power and cost. We are not,
however, adding appreciable weight, or an entirely new electronics
challenge. Implementing this technique, therefore, could simply a
question of a cost/benefit tradeoff. High performance, lower power
audio sampling ASICs already exist, and can be leveraged with min-
imal technical issue. The piezo sensor material (PZT) is ubiquitous,
cheap, and does not require power to operate (only signal buffering),
and, as described earlier, the surface pattern layer could simply be
integrated into existing etching processes. Even patterning of epoxy
resins (such as the method used to create diffraction gratings), is a
inexpensive "roll to roll" film process. In terms of reliability, long
term durability of this film must be tested, but we saw no dramatic
wear patterns during our testing, and did not ever need to replace
the film on our prototype hardware. We were able to clean with
isopropyl alcohol routinely without damage.

The 192kHz sampling rate we use is high, much higher than most
44.1kHz or 48kHz audio chips, but this is not an inherent limitation
with the technique, it is only what we were able to implement here
with off-the-shelf materials and components. The sampling rate
sets the highest linear velocities that can be sensed. This value can
be engineered by altering the surface pattern with only slightly
wider elements, for example, 20𝜇m elements would reduce all signal
frequencies by a factor of 4, allowing similar velocity information
to be sensed with a 48kHz ADC.

The current implementation of TriboTouch is single touch. We
did not explicitly investigate multitouch feasibility with this tech-
nique, but can envision approaches where multiple acoustic datas-
treams (via multiple piezos) could be fused with multitouch data
to help with individually ascribing sounds with their touch point,
essentially turning the problem into one of sound separation. We
leave this investigation for future work.

We also report that while the TriboTouch layer leaves minimal
tactile, audible, or visual impact on the user, it is not totally imper-
ceptible. The sparkling of the optics with the display can be seen,
and surface reflections obviously reveal rainbow patterns which
this film was designed for. Additionally, some users can also feel
subtle tactile artifacts at the start and stop of their finger on the
film, or while moving in circles. Similar artifacts are also emitted
audibly from the device, though, generally, this sound is not noticed
unless the ear is very close to the surface. With the look and feel of
commercial products at such a high bar, these perceptual artifacts
might have to be mitigated. We believe, however, that moving to a
more randomly rough pattern (that is, an etched surface without
such rectangularly arranged features) would help alleviate many of
these artifacts.

Looking towards the future, we see multiple avenues for con-
tinuing work. Large surfaces may be particularly suited to this
technique, as user velocities are larger, and both touch sensor and
display rates tend to be lower. Investigating the effectiveness of
TriboTouch as displays get larger could yield interesting results.
Exploring TriboTouch physics could also yield powerful results. For
example, velocity prediction in a single direction with a 1D grating

is trivially simple, as linear velocity directly correlates with an ob-
ject’s velocity in that axis. This could lead to cheap, extremely high
performance swipe gesture sensors. Understanding the physics be-
hind the effect could also lead to new hybrid ML models, where ML
is used for velocity prediction, but then a linear model is used to
integrate to an object position. Additionally, an ML model could be
trained to recognize various 2D gestures without the need of a full
touchscreen.

Any of these techniques could also benefit with the addition of
just a few more piezos (i.e., cents worth of hardware), placed at dif-
ferent locations. Initial data suggests a strong correlation between
object distance and vibration amplitude. If a relationship between
vibration amplitude and object location could be established, then
a combination of frequency and relative amplitude between piezo
signals could be used to associate a particular sound to a touch
location reported by the capacitive screen. When multiple sounds
occur, they could be separated and associated with different fingers.

10 CONCLUSION
In this work we introduced a novel touch sensing hardware tech-
nique called TriboTouch, and applied it to the use case of touch-
screen latency, a longstanding problem in the field. We detailed a
combined hardware+software approach where conventional touch
and acoustic data are fed into a machine learning model to produce
predictions of future touch location. We also outlined the basic
principles of TriboTouch, precisely describing how to build a Tri-
boTouch system with cheap and ubiquitous materials and methods.
In our evaluations, we show that we can reduce latency from 96 to
16 ms with mean distance error of 5.13mm. Importantly, we show
measured improvement associated with incorporating TriboTouch
data into the touch prediction pipeline, as our combined model
outperforms the touch only models.
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