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Figure 1: Implicit eye tracking calibration algorithm proposed for Online-EYE using multimodal input UI selection. In this 
work, we contribute an evaluation of the approach with controllers in VR, but the principle remains the same and can be 
extended to bare hands, mouse, and other input modalities for interaction, in any XR device with known UI positions. 

Abstract 
Unlike other inputs for extended reality (XR) that work out of the 
box, eye tracking typically requires custom calibration per user 
or session. We present a multimodal inputs approach for implicit 
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calibration of eye tracker in VR, leveraging UI interaction for con-
tinuous, background calibration. Our method analyzes gaze data 
alongside controller interaction with UI elements, and employ-
ing ML techniques it continuously refines the calibration matrix 
without interrupting users from their current tasks. Potentially 
eliminating the need for explicit calibration. We demonstrate the 
accuracy and effectiveness of this implicit approach across various 
tasks and real time applications achieving comparable eye track-
ing accuracy to native, explicit calibration. While our evaluation 
focuses on VR and controller-based interactions, we anticipate the 
broader applicability of this approach to various XR devices and 
input modalities. 
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1 INTRODUCTION 
As extended reality (XR) devices increasingly adopt eye gaze as a 
default input modality alongside hands for gaze + pinch [45], but 
also as an attention mechanism to drive AI agents [5] the need for 
efficient eye tracking calibration becomes crucial. 

Currently the predominant approach to solve eye tracking cali-
bration is to ask every participant to do a native explicit calibration 
when they start the system. This requires the user to fixate on 
appearing targets across the head mounted display (HMD). Upon 
completion the user is ready to start using their HMDs. And de-
spite techniques that propose using alternatives such as pursuit: 
e.g. moving targets, for calibration [47]; explicit calibration is still 
a preferred approach. 

While it is clear that input experiences require personalizing 
of sensing to enable high accuracy on our interactions, whether 
they be hand tracking, or eye tracking, the approach on both has 
been very different. For hand tracking generally a large database 
of many hands is collected and labeled, to later be used to train a 
computer vision model. With the hope of a generic model that will 
detect any and all hands out-of-the box. However, when it comes 
to eye tracking somehow we still need to do a native calibration, to 
estimate the user-specific offset between the optical axis of the eye 
and the visual axis of the point of gaze. 

In this paper we propose an approach that will make eye gaze 
calibration feel more out-of-the box. We first make the assumption 
that there can be such thing as a Generic Eye Tracking Model, in a 
similar way to generic Head Related Transfer Functions (HRTFs) for 
spatial audio [2], eyes, like ears, are generally located within a range 
on human faces, and human eyes behave within certain patterns of 
normality. Hence, HMDs could come pre-calibrated with a generic 
model [40, 49, 72]. Of course, that would never perform as well as a 
native calibration personalized by user. But that’s where we believe 
a much simpler multimodal implicit eye tracking calibration can 
fill the gap. 

We present Online-EYE as a technique that leverages other input 
modalities inside VR to upgrade a generic calibration into perform-
ing like a traditional explicit calibration. We can do that because it is 
natural for the human eye to look at a target before clicking. Hence 
if we are asking a person that is using their controllers or direct 
touch to manipulate the user interface (UI) we can use the actual 

UI elements that are being selected as pseudo-calibration targets. 
Whether it is a keyboard, a slider, a button or a space invader, we 
can use that target for implicit eye tracking calibration. And once 
the eye tracker is calibrated, we can enable gaze and hands [35] or 
any other gaze interaction [37]. 

To make sure this form of calibration is robust enough, and can 
be usable in real scenarios we embark on a series of studies and 
tests to make sure that our assumptions are correct: 
• Hypothesis 1: users are looking at the targets when they 
click 
• Hypothesis 2: we can use those clicks on the UI to do implicit 
eye tracking calibration 
• Hypothesis 3: implicit spoof calibration is robust and can 
perform like traditional explicit calibration 
• Hypothesis 4: it is natural and easy for users to transition 
between pointing and gaze driven selections 

As our eye behaviours and hand-eye coordination change de-
pending on the tasks, and even depending on our visual hemifield 
[38], it is unclear to what extent all these hypotheses can prove 
true. We explore all this in a series of studies and find that implicit 
calibration brings a good trade-off between accuracy of eye tracking 
and simplicity for the users. 

In sum, Online-EYE contributes a multimodal calibration method 
based on UI interaction. Building on prior work of eye-hand coor-
dination in UI interactions, we first validate our hypothesis across 
different target sizes and densities of UI elements. We explore how 
our implicit calibration compares to traditional explicit calibration. 
We show Online-EYE approach is feasible and fast, – it starts cali-
brating straight away without waiting for a large number of training 
data– requires only 8-9 clicks to achieve enough accuracy to enable 
gaze-and-pinch. Making it a contender and alternative eye tracker 
calibration method for XR enabling a transition directly from initial 
controller, or potentially direct touch, to use of gaze-driven selec-
tions. We contribute an evaluation of the idea using controllers 
in VR, but we expect results to be generalizable to any manual 
pointing device, including controller, direct touch, and mouse, and 
any type of XR where the position of the UI elements are known. 

2 RELATED WORK 
Our contribution is based on a number of studies that partially 
support our hypothesis. But also that collectively contribute to the 
ongoing development of eye-tracking calibration techniques, each 
offering unique insights and potential avenues for future research 
and improvement. 

2.1 Hypothesis 1: People Look Where They 
Point 

Despite we also dive into testing this hypothesis to characterize 
the limits of this assumption, we aren’t the first ones to realize of 
this fact, and there is mounting prior work that both supports and 
builds on this aspect. 

Our vision serves as both a source of information and a guide 
for our actions [38]. People tend to look ahead to where they will 
grasp or place objects, to plan and execute movements [14, 27, 30]. 
It has been demonstrated that gaze can be used to predict target 
selection [9, 70]. Gaze direction naturally aligns with intended 
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selection points, with strong connection between gaze and cursor 
or direct touch positions [8, 24, 32, 71]. 

Eye movement has long been proposed as a fast and convenient 
method for human-computer interaction [4, 26] precisely because 
of the visuo-motor guided coordination of our actions [38]. Per-
haps the most obvious proof of this is the seamless gaze + pinch 
interaction we have seen emerge in commercial VR/AR [46]. Eye-
hand coordination has enabled natural interaction techniques for 
selection [67], menu interaction[36], and 3D object manipulation 
[35]. 

Overall, these prior works already supports the validation of 
our hypothesis 1. In our paper we further explore the limits of this 
assumption in our particular context of UI calibration in VR via 
experimentation. 

2.2 Hypothesis 2 and 3: Explicit and Implicit 
Calibration 

Despite accuracy limitations, eye tracking has the potential to be 
a more efficient and comfortable input method for AR/VR inter-
actions, faster than head or controller, less fatiguing, and more 
likely to adopt [13]. Traditional calibration methods require users 
to explicitly fixate on a set of calibration points, the gaze estimates 
are then fitted onto the ground truth locations [17]. However, this 
type of calibration over-relies on the users following correctly the 
instructions, and actually looking at the targets [33]. If they don’t 
complete the calibration correctly the system will fail [49]. Further-
more, calibration may drift change due to headset slippage. While 
some eye trackers are robust against slippage, others may exhibit 
0.8-3.1 degrees of error increase due to participant behaviour such 
as speech, facial expressions, and movement [41]. Therefore, meth-
ods for obtaining robust calibration more independent of users 
performance on an explicit task have long been researched. Some 
approaches have tried including data from multiple session stages 
[52] or to temporally interpolate gaze locations [3]. A challenge 
to overcome these issues this way is that explicit calibration in-
terrupts users from their tasks, and sometimes works only offline 
when calibration data from different temporal stages are utilized. 
All in all, showing that explicit calibration, despite their prevalence, 
are still a barrier to eye tracking. 

The only alternative then is to make calibration better via im-
plicit techniques. In this context, Implicit calibration techniques 
have gained attention for their potential to automate the process 
without bringing users out of their regular device use. Huang et al. 
[25] introduced PACE, an auto-calibrating eye tracking leveraging 
user interactions, fixation dynamics, that uses a random forest clas-
sification to validate gaze data points for calibration. Pi et al. [48] 
proposed a task-embedded online calibration method to enhance 
robustness to head motion, utilizing a transformation matrix and a 
weight term to optimize calibration. They do so by comparing the 
similarity between current data to data history. Papoutsaki et al. 
[42] developed WebGazer, a scalable webcam eye-tracking system 
that employs online self-calibration using clicks, fixations, and cur-
sor movements. Fares et al. [12] also explored cursor control using 
eye movements and local calibration points. However, all these 
projects were ran on regular PCs, and while they might translate 
to Head Mounted Displays (HMD) the nature of the interactions 

in VR are very different, as for example, there is no general use of 
mouse for input for VR. 

What is clear is that since natural interactions with UIs, particu-
larly in immersive AR/VR environments, involve complex eye-hand 
coordination, implicit calibration can become quite complex too. 
As such, there are many elements that can influence this type of 
calibration. Sidenmark and Lundström’s research demonstrated 
that the probability of fixation on an object is influenced by fac-
tors such as object movement, task precision, and feedback [56]. 
The eye-hand coordination poses a challenge to identify the opti-
mal timing to enable UI calibration [45], the trade off between the 
time required to collect many data points, and the accuracy of the 
calibration is also an consideration. 

To reduce the need to optimize timing between eye and inter-
action, other implicit calibration methods leverage visual saliency 
[19, 20, 34, 43, 60, 73], however that has proven to be very inter-
subject variable and still very passive, an alternative of a bit more 
robust passive visual attention calibration can focus on smooth-
pursuit eye movement with moving targets [16, 47, 50, 64], or on 
and task specific natural gaze patterns [1, 68]. 

Other work has proposed use of gaze in ways that does not re-
quire calibration. Vidal et al.’s Pursuits method tracks the user’s eye 
movements in relation to the movement of objects on the interface, 
robustly detection attention based on motion correlation without 
need for accurate gaze estimation [65]. Esteves et al. applied the 
principle for input at a glance on smartwatches [11], and Sidenmark 
to infer attention to objects that move in the depth plane [55]. These 
works are related in the spirit of facilitating gaze interaction out of 
the box, but they are limited in that they rely on animation of UI 
elements. 

2.3 Hypothesis 4: Gaze and Hand Transitions 
Naturally 

Eye and hand naturally work together, with intuitive division of 
labour of gaze pointing and hand confirmation [36, 39, 59]. The two 
modalities can be combined seamlessly for interacting with devices, 
complementing direct-touch [44], manipulating XR objects [35, 46], 
selecting regions [54] and disambiguating objects in 3D space [7, 66]. 
Hand input complements gaze in multimodal cascaded interactions 
that harnesses the speed of gaze and precision of hand, manually 
transitioning between the two modalities [29, 74]. Additionally, 
the coexistence of controller and gaze pointers can allow users to 
seamlessly toggle between the two input modalities based on their 
preferences [63]. Based on all the prior work supporting natural 
gaze and hand interaction, we build online-EYE to both leverage 
our implicit calibration on this by using the ray of the controller, 
(or potentially the hand ray), as well as enable an easy back and 
forward from hand ray to gaze + pinch type of input for interaction 
once implicit calibration is achieved. 

3 HYPOTHESIS 1: PEOPLE LOOK AT WHERE 
THEY CLICK 

To evaluate this hypothesis we prepared a first study (Study 1) that 
presented participants (n=9, 4 females) with different targets inside 
a VR headset, we then asked participants to hit the targets with 
the VR controller pointer. We recorded where people were looking 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Hou, et al. 

Figure 2: Procedure of Study 1. Participants perform the de-
vice native calibration before experiment and evaluated the 
eye tracking accuracy with the head-locked target fixation 
task. Then, they complete the counter-balanced target selec-
tion task at 0.5m and 2m. To conclude, the fixation evalua-
tion task is performed to confirm eye tracker drift during 
the study. 

at, the target location and the controller pointer hit location. This 
enabled us to find the offsets on hit and gaze on this task for targets 
of different size, distance and density. Figure 3 shows the average 
performance of all participants when presented to the variety of 
targets. 

As it would be expected, smaller targets may require more preci-
sion, and targets that are more densely positioned might also influ-
ence alignment. Furthermore, eye trackers are typically calibrated 
at a fixed distance, often around 2 meters. In contrast, direct touch 
interactions occur much closer, typically at arm’s length (around 
0.5 meters). Therefore we also compare how render distance affects 
selection precision and gaze-target alignment. 

3.1 Procedure 
Figure 2 illustrates the procedure for Study 1. Participants put on 
the Meta Quest Pro headset and were instructed to adjust the fit 
and interpupillary distance. Eye movements were tracked using the 
headset’s built-in eye tracker, and participants performed the native 
device calibration. Then we completed an Eye Tracker Accuracy 
evaluation with a head-locked target task. In this task, participants 
were instructed to look at appearing targets as closely as they could. 
25 head-locked targets were shown to the participants, spanning a 
5x5 grid of ±15 degs and appeared one at a time for 2s each. Target 
design follows Thaler et al. [62], 1.5◦ in diameter with a cross hair 
and an inner dot of 0.2◦ . Participants performed the fixation task 
at 0.5m and 2m render distance. We perform the same accuracy 
evaluation with head-locked fixation task before and after the study, 
to see if the eye tracker has shifted. We measured eye tracking 
accuracy as the mean visual angle difference between gaze samples 
and target positions [21], over the 1-1.8s period after target onset, 
in accordance with the approach of previous work [22, 53, 69]. We 
employed a Meta Quest Pro headset for the experiment. Its eye 
tracking accuracy has been evaluated to be 1.65◦ (SD:0.17) where 
head is free to move, and 2.16◦ (SD: 0.69) when head is restrained, 
supporting it as a capable tool for studying visual attention in VR 
[69], providing reliable tracking capabilities for our experiments. 

Three sizes were tested: 2.3 degrees, 4 degrees, and 6 degrees 
(approximating small, medium, and large UI elements). Two den-
sities were tested: 0 degrees separation (touching) and 3 degrees 

separation (measured between the closest points on circumference). 
An example is shown in figure 2. 

Participants were instructed to use a VR controller to select 
targets in the virtual environment. The field of view was filled 
with a grid of circular objects. The target was marked in purple, 
while others were yellow. When the controller’s ray collided with 
a target, visual feedback was provided. When the participant cor-
rectly selected a target by pulling the trigger button, a new target 
was marked purple. Target positions were arranged in a 3x3 grid 
spanning approximately ±15 degrees with a random sequence. The 
process continued until all targets were selected with 5 repetitions. 

Each participant completed 2 render distances × 3 sizes × 2 
densities × 9 targets × 5 repetitions = 540 trials. The conditions 
were counterbalanced. 

3.2 Results 
The overall mean eye tracking accuracy across all participants was 
1.77◦ (SD:0.74), 

We found that the offset (euclidean distance) between where 
people look and the target center increased with target size, but 
not with target density or render distance. 

For gaze-target offset, a significant main effect of target size 
was found (F(2, 48)=6.33, p=0.004). Tukey’s post-hoc test revealed 
that the 6◦ target size resulted in significantly larger gaze-target 
offsets compared to the 2.3◦ target size (p=0.003). No other pairwise 
comparisons were significant. The main effects of density and the 
interaction effect between size and density were not significant 
(p>0.05). 

Similarly, a significant main effect of target size was observed for 
gaze-hit position offsets (F(2, 48)=7.55, p=0.001). Tukey’s post-hoc 
test again showed that the 6◦ target size led to significantly larger 
offsets compared to the 2.3◦ target size (p=0.001). The main effects 
of density and the interaction effect between size and density were 
not significant (p>0.05). 

No significant difference was found between gaze-target and 
gaze-hit position offsets at any of the target sizes, between the 
0.5m and 2m render distances, or between the 0 and 3 degree target 
densities (𝑝 > 0.05). These results are shown in Appendix Figure 
11 and 12. 

Overall these results point in the direction that people look at 
where they are clicking. The ET accuracy remained the same in our 
pre-post experimental evaluation. In the subsequent experiment, 
we further test when H1 in naturalistic settings, testing against 
typing, scrolling and drag-and-drop beyond just buttons. 

3.3 Fixation Analysis 
For accurate calibration of gaze based on UI selection data, two key 
criteria need to be met: stable gaze (fixation) and proper timing. 
First, the system must exclude saccades and only use gaze that is 
in fixation. 

We removed system invalid gaze samples and employed the 
IDT algorithm to detect fixations [51], with a minimum duration 
threshold of 70 milliseconds and a dispersion threshold of 1.5× the 
inter-sample root mean square (RMS) of measured gaze data (Figure 
4). 
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Hit point 
Gaze 

Figure 3: To test H1, we run Study 1, that formalized where people look at when asked to click on different targets. Each data 
point is alpha blended with 0.2. Gaze-target and gaze-hit position offsets increased significantly as target sizes increases. Gaze-
target and gaze-hit offsets measure the angular distance between gaze position and the target center or hit point, respectively. 
These metrics help determine the optimal ground truth position for implicit gaze calibration. We found no significant difference 
between the two. Data is collapsed across render distances in analysis. 

Second, precise timing is crucial to avoid inaccuracies. Due to 
potential “late-trigger errors” [28], the selection timestamp might 
not coincide with the moment of gaze fixation on the target. The 
user’s gaze may have moved away before the selection occurred 
[25, 56]. To address this, the system traces back from the selection 
event to identify the first time the cursor hovered on the target. 
Then all valid fixations from that first hover to selection are mea-
sured against the target center, the one with the shortest distance 
is chosen for calibration. We define the last valid fixation for UI 
selection as one that either contains the selection timestamp itself 
or ends no earlier than 300 milliseconds prior to the selection event. 
Furthermore, the centroid of the fixation is < 10 degrees from the 
selected UI. This ensures we capture the user’s true intention when 
selecting the element, even if a slight delay occurred between fixa-
tion and selection. The IDT thresholds and fixation error thresholds 
were chosen empirically during pilot testing. The 300ms timing is 
also influenced by prior work [25, 42]. 

4 HYPOTHESIS 2: WE CAN USE A REGULAR 
UI TO PERFORM IMPLICIT EYE TRACKING 
CALIBRATION 

We designed a second study to explore how good an implicit cali-
bration based on UI targets could be if HMDs came with a Generic 
Model of Eye Tracking. To simulate the scenario of headset with a 

Gaze 
Click 

Fixation 

Gaze 
Cursor 

Target 

Figure 4: Representative example of gaze analysis showing 
areas where fixation is detected and a zoomed in plot with 
the distance to the target and the cursor. 

factory default gaze position estimate, each participant used the pre-
vious participant’s explicit calibration as a simulated factory default 
Generic Model. When using this device we would run an implicit 
calibration to refine this gaze model estimate to fit the individual 
user as they interact with various UIs, potentially eliminating the 
need for manual explicit calibration. 
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4.1 Implicit Calibration 
Using any target we can calculate a new form of spoof calibration 
that works implicitly as a user is selecting different UI elements. 
Once we detect eye fixations we find best matching gaze-UI element 
pairs that will later be used to train a machine learning algorithm 
to calibrate the implicit Eye Tracking. 

The calibrated gaze positions, denoted by 𝑥𝑐𝑎𝑙𝑖𝑏𝑟 𝑎𝑡 𝑒𝑑 and𝑦𝑐𝑎𝑙𝑖𝑏𝑟 𝑎𝑡 𝑒𝑑 , 
represent the refined horizontal and vertical components of the 
user’s gaze, respectively. These are obtained through a linear trans-
formation of the measured gaze components, 𝑥 (horizontal) and 𝑦 
(vertical), according to the following equations: 

𝑥𝑐𝑎𝑙𝑖𝑏𝑟 𝑎𝑡 𝑒𝑑 = 𝐴 𝑥 𝑥 + 𝐵 𝑥 𝑦 +𝐶 𝑥 , 

𝑦𝑐𝑎𝑙𝑖𝑏𝑟 𝑎𝑡 𝑒𝑑 = 𝐴 𝑦 𝑥 + 𝐵 𝑦 𝑦 +𝐶 𝑦 , 

where A, B, and C (with subscripts for horizontal and vertical) are 
weight coefficients that need to be determined during the calibration 
process. 

To achieve this calibration, we employ a design matrix, denoted 
by X, which incorporates the measured gaze data. Each row of 
X represents a single gaze observation in the form [𝑥, 𝑦, 1]. The 
ground truth for the calibration process is represented by a vector, 
Y, in the form [𝑥𝑔𝑟𝑜𝑢𝑛𝑑𝑇 𝑟𝑢𝑡 ℎ, 𝑦𝑔𝑟 𝑜𝑢𝑛𝑑𝑇 𝑟𝑢𝑡ℎ ], containing the corre-
sponding UI positions that the gaze points to. 

Our objective is to establish a mapping between the measured 
gaze data (in X ) and the actual UI positions (in Y ). This is achieved 
by minimizing 

| |Xw − Y| |2 

where the weight matrix, w, contains the A, B, C coefficients. 
Using a recursive least squares (RLS) algorithm we can update 
the weights in a computationally efficient approach. Iteratively we 
update the weight matrix, w, with each new gaze observation, ef-
fectively adapting the calibration as more data becomes available 
[18]1 . We employ two RLS processes, one for each of the horizontal 
and vertical gaze directions, so we are fitting for six weight coeffi-
cients: 𝐴𝑥 , 𝐵𝑥 , 𝐶𝑥 to calibrate gaze in the horizontal direction, and 
𝐴 𝑦 , 𝐵 𝑦 , 𝐶 𝑦 to calibrate gaze in the vertical direction. 

4.2 Participants 
22 participants took part in the study. One was removed due to bad 
data quality. 11 were females. 14 were between 18-25 years, 3 were 
between 25-35, 3 were between 35-45, and 1 was 45-55 years. 11 
had good and uncorrected vision, 4 wore glasses, 6 wore contact 
lenses. 7 participants never used a VR device before, 13 used one 
occasionally and 1 used one weekly. 19 participants have never used 
an eye tracking device before, 2 used one occasionally. 2 participants 
never played video games, 11 played occasionally, 4 played weekly 
and 4 played daily. Participants rated their comfortableness with 
using a VR device as 3.57 (SD:1.05), on the scale of 1 to 5, 5 being 
very comfortable. 

4.3 Procedure 
Fig 5 illustrates the procedure for Study 2. Participants were in-
structed to put on the Meta Quest Pro headset and adjust the fit 
and interpupillary distance. Gaze positions were tracked using the 

1We adapted the code by Craig Kleski, available at https://github.com/craig-m-k/ 
Recursive-least-squares 

headset’s built-in eye tracker. Participants began the experiment 
without undergoing any calibration process, the eye tracker outputs 
gaze position using the previous participant’s calibration. Gaze po-
sition and controller states were recorded throughout the tasks. The 
ID and position of an UI element was recorded when the controller 
ray collided with it. Trigger pulls and UI selections were tracked. 

Participants performed different UI tasks, at the end of each UI 
tasks, we conducted the fixation task to evaluate the eye tracker 
accuracy. 

We explore the following UIs and tasks: 
• Buttons: Participants select radio buttons to complete a multi-
choice questionnaire. Buttons are 2◦ in diameter and the 
interactive UI area is approximately 5◦ to 16◦ horizontally 
and 0.5◦ to 22◦ vertically. At least 40 clicks are collected per 
participant. 
• Slider: Participants adjusted sliders to modify the appearance 
of an avatar. Each slider handle is 1.5◦ in diameter. The 
interactive area is approximately −7◦ to 1◦ horizontally and 
12◦ to −29◦ vertically. At least 30 clicks are collected per 
participant. 
• Drag-and-drop: Participants solved puzzles by moving puz-
zle pieces to their correct locations. Each puzzle piece is 
5◦ wide. The interactive area is approximately −22◦ to 21◦ 
horizontally and 7◦ to −13◦ vertically. At least clicks are 
collected per participant. At least 27 clicks are collected per 
participant. 
• Keyboard: Participants typed a sentence while being able to 
observe the characters appear in the input field. Each key is 
3◦ wide and 4.5◦ tall. The interactive area is approximately 
−15◦ to 21◦ horizontally and 0.87◦ to −17◦ vertically. The 
sentence is “this experiment is really interesting”. Partici-
pants are allowed to use “Delete” button freely. At least 33 
clicks are collected per participant. 
• Password: Participants typed the same sentence, but with 
asterisks masking the characters, simulating password entry. 
Keyboard layout is the same. Participants are allowed to use 
“Delete” button freely. 

We also explore if UIs rendered at 0.5m (potential direct touch 
applications) and at 2m, affect behaviour and calibration accuracy 
differently. 11 participants completed the study at 0.5m render 
distance, and 11 participants completed the study at 2m render 
distance. The order of the UI tasks was counterbalanced. 

At the end of the experiment, participants completed the native 
explicit device calibration process, and repeated the head-locked 
fixation ET evaluation task again. This allows us to measure the 
explicitly-calibrated eye tracking accuracy for each participant, and 
compare against an implicit online calibration approach. 

4.4 Results 
To see if clicks on UI elements can really be used to improve ET 
calibration like an explicit calibration we evaluated eye tracking 
accuracy under three distinct calibrations: our General Model proxy, 
Implicit –using our spoofed targets–, and Explicit calibration. 

In general we find (Figure 6) implicit calibration is more accurate 
than General calibration. The grand mean of eye tracking error for 
Implicit calibration is 1.94◦ (SD:0.73◦), significantly lower than the 

https://github.com/craig-m-k/Recursive-least-squares
https://github.com/craig-m-k/Recursive-least-squares
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Figure 5: Procedure of Study 2. Following counterbalanced UI tasks, participants performs head-locked fixation eye tracking 
evaluation task. Real-time performance of Online-EYE is explored in the game application. After the completion of all UI tasks, 
native device calibration is performed and evaluated, and finally the evaluation of eye tracking accuracy after remounting. 

(a) (b) 

Figure 6: 6a: ET accuracy using a proxy of General Model, using Implicit calibration and Explicit calibration. 6b: Implicit 
calibration accuracy using as different UI elements as targets. Trials with errors more than 2 standard deviations from the 
mean error were excluded as outliers condition-wise. In total, 439 trials (3.66%) were removed. 

grand mean of General calibration 3.08◦ (SD:1.66◦) (t-test=-2.80, 
p=0.008, df=40). However the grand mean of Explicit calibration 
is 1.19◦ (SD:0.56◦), also significantly lower than the grand mean 
of Implicit calibration (Fig 6a). Which would seem to indicate that 
Implicit calibration would still over-perform an spoofing method. 

However, we further explored different types of UIs and tasks to 
better understand how human behaviour with UI elements would 
influence implicit calibration results (Figure 6). While some UI ele-
ments require users to fixate precisely on a target (e.g., selecting a 
radio button), others, such as sliders, might demand less coordina-
tion of gaze and selection, or perhaps as in typing, rely on faster 
shifts in gaze attention. 

To test our hypothesis we assessed the calibration using different 
UI elements as targets: discrete (buttons and game), continuous 
(slider and drag-and-drop), and typing (keyboard and password). 
Results of the calibration accuracy achieved can be found in Figure 
6b. We found no significant differences in performance between UI 
elements (𝑝 > 0.05). We did however see a trend towards higher 

accuracy using discrete targets. We believe the power of our sample 
was perhaps too small to see real effects between UI elements. 

5 HYPOTHESIS 3: IMPLICIT SPOOF 
CALIBRATION IS ROBUST AND CAN 
PERFORM LIKE TRADITIONAL EXPLICIT 
CALIBRATION 

We wanted to further understand the capabilities of Implicit vs 
Explicit calibration so we delved further into our data. It is well 
established that users rarely look at the periphery unless they are 
on a head-fixed ET task [6], like the one we use on our evaluation. 
Which means that our training data for Implicit calibration did not 
cover eccentric areas of the Field of View that were later evaluated. 
To better understand the impact of this concentration of targets 
around the center of vision of each participant FoV we ran a follow 
up analysis. 

We constructed the area of normal interaction as the convex hull 
of the gaze positions collected during UI tasks (Figure 7, left)These 
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convex hulls served as reference regions for grouping gaze positions 
into categories - inside or outside the interaction region. In the 
head-locked fixation task, we collected evaluation gaze positions, 
and compared them to participants’ respective convex hulls. We 
classified gaze positions as "inside" if they fell within the hull and 
"outside" if they fell outside 2 . 

We found no significant differences between Implicit and Ex-
plicit calibration methods for "inside" positions (t-test=1.91, p=0.06, 
df=40), with mean errors 1.61◦ (SD:1.06◦) and 1.10◦ (SD:0.57◦), 
respectively. However, as expected, for "outside" gaze positions, 
Explicit calibration demonstrated higher accuracy compared to Im-
plicit calibration (t-test=4.14, p=0.00017, df=40), with mean errors 
1.22◦ (SD:0.57◦) and 2.07◦ (SD:0.71◦), respectively (Figure 7). 

5.1 Distance and Timing Dependence 
Another issue to make sure implicit calibration is robust is if it 
works at different distances. Normally explicit calibrations are per-
formed at one predefined distance, which might differ from the 
distances used in the user interface, usually presented at 0.5 to 
1 meter (Figure 7). Therefore, to further asses robustness of this 
technique we investigate implicit calibration at two distances: 0.5m 
and 2m. Independent t-test revealed no significant difference in 
implicit calibrated eye tracking errors between these two distances 
(t-test=-1.58, p=0.12, df=40). 

5.2 Remount 
We measured also another axis of robustness on eye tracking by 
exploring how well explicit calibration persists after a participant 
takes off the device and then puts it back on, aka remounts. We 
found no significant differences between eye tracking accuracy pre-
and post- remount (t-test=1.12, p=0.27, df=36). 

6 ONLINE-EYE IMPLEMENTATION 
We further implement Online-EYE to bring all this implicit calibra-
tion into real applications. We use the same Recursive Least Square 
implementation we described priory but run it live as the users 
interact with the UI (Figure 1). 

For that, we attach the RLS process to a forgetting factor (0 ≤ 
𝜆 ≤ 1) to control the balance between how much importance is 
placed on the current observation versus the memory of previous 
observations. A smaller 𝜆 places more importance on the current 
observation. The forgetting factor allows the calibration to prioritize 
recent gaze data while still incorporating valuable information from 
past observations. 

The recursive least squares (RLS) algorithm leverages the Sherman-
Morrison lemma to achieve efficient weight updates. Given the 
design matrix, X, constructed from previous observations, and a 
new observation, g, with its corresponding ground truth, 𝑡 , the 
following update steps are performed: 
• given A = 𝜆−1 (X𝑇 X)−1 , compute, 
• z = Ag, and, 
• 𝛼 = (1 + (g𝑇 z))−1 . 
• Update the weight matrix: w ← w − 𝛼g𝑇 (w + 𝑡 z)z + 𝑡 z. 
• Update A matrix for next iteration: A ← A − 𝛼 zz𝑇 . 

2The convex hulls for one example participant are shown in the appendix, Figure 13 

Online-EYE calibration begins after establishing four valid gaze-
UI pairs. This process repeats every three selections. Each data 
point is processed ten times by the algorithm using a decreasing 
forget factor. The forget factor is initially set to 0.95, then linearly 
decreased towards a final minimum of 0.45 over ten fitting itera-
tions. Pilot testing showed no gain in accuracy by reducing the 
forget factor further or with more iterations. This iterative process 
continuously refines the weight matrix based on new gaze and UI 
pairs, ensuring the calibration adapts to participants’ individual 
characteristics and any drift and slippage overtime. 

6.1 Applications 
To assess the effectiveness of the Online-EYE in a real-world sce-
nario, we explored two applications with the same participants. 
In both we aim to perform an Implicit calibration online, as an 
effective alternative to traditional explicit calibration. 

In both applications, Online-EYE begins once four UI elements 
have been selected. RLS weights is updated each time the system 
has collected three controller clicks. The mean gaze-target offset of 
the three-click-batch is calculated and used to access the quality of 
calibrated gaze, dynamically switch on/off gaze pointing according 
to an accuracy threshold. The calibration matrix is then updated 
using these three clicks’ data, according to Section 4.1. 

The recursive least squares algorithm ran in a Python backend, 
which communicated with the Unity game environment via the Lab 
Streaming Layer (LSL) [15], ensuring real-time calibration updates. 
Gaze fixation is detected for the 10s period prior to each click. We 
recorded gaze direction, controller position and ray direction, head 
rotation and position, and interaction events throughout the game. 

6.1.1 Application 1: Space Invaders. We present participants with a 
space invaders game (Figure 8), where they need to select appearing 
targets at random, unknown locations. Initially, participants use 
the controller to point at the asteroids. When implicit calibration 
reaches a good accuracy threshold (1.5◦ degrees of error), the game 
transitions to Online-EYE. If the accuracy was to drop, they pointer 
would be reattached to the controller. However, participants in this 
application did not have control over the type of pointing they were 
using, and in many cases remained unaware that the pointer had 
transition to gaze. 

This application explores both the edges of using a minimal 
number of targets, as well as the possibility to seamless transition 
back and forward to gaze driven pointing and controller pointing. 

Participants used a controller to direct the reticle of their space-
ship’s gun. Asteroids and aliens, each measuring 4.5◦ in diameter, 
emerged at random locations within +-15 degrees. The objective 
was to move the reticle onto these targets and destroy them by 
clicking the trigger button. The selectable area for the asteroids 
and aliens was based on their circular diameter of 4.5 degrees, even 
though their actual shapes were not perfectly round. 

Throughout the game, consisting of 50 targets, gaze data and 
target positions were continuously collected while the online cali-
bration ran in the background. 

Initially, participants used the controller to aim. When the online 
calibration achieved < 1.5◦ error, the reticle transitioned to gaze 
control, signified by a white dot appearing within the reticle. In 
order to survey how intuitive it is to notice and understand the 
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Figure 7: (left) Distribution of locations where the users selected targets in the different UI tasks. (center) Further analysis 
shows comparable accuracy between Implicit and Explicit calibration inside interaction region. But outside the convex hull, 
Explicit calibration is more accurate. (right) Results are independent of the UI distance used for Implicit calibration. 

Explicit 
Implicit 

Game 

Figure 8: Application 1: appearing targets in the space invaders game. Participants start by using controller to steer the reticle 
onto the target. Once online calibration is good enough, gaze pointing controls the reticle, with a white dot appearing in the 
reticle center as feedback (unknown to the participants). Participants could use gaze to aim at targets and pull the trigger to 
hit. On the right plot an example of the improvement on implicit calibration with Online-EYE: already after 3 evaluations, 
performing as good as native explicit calibration. 

system has transitioned to gaze pointing, participants were not 
informed about the meaning of the white dot or that gaze-and-
pinch has been switched on. We simply asked them to notice any 
changes in the aiming experience when the white dot appeared. 

If the error exceeded the threshold, the system switched back to 
controller-based aiming, for feedback, the white dot would disap-
pear. If the reticle was not aligned on the target when the trigger 
was clicked, the system would record an error event. In such cases, 
the trigger click wouldn’t destroy the target, and it would remain 
on the screen until successfully targeted. 

6.1.2 Application 2: Experience Questionnaire. In the second ap-
plication (Figure 9), participants completed NASA TLX surveys to 

rate their experience with using controller versus gaze pointing in 
the space invaders game, as well as a demographic survey. 

This application serves three purposes - to collect user feedback 
for using online-calibrated gaze pointing vs. controller during the 
space invader game, collect participant demographic information, 
and to demonstrate the feasibility of using survey (button selection) 
to enable online-calibrated gaze pointing. 

The interface led participants through a series of navigation 
clicks to launch the surveys. Participant first click on the “Home” 
button to launch an apps menu. They then open each of the three 
apps: one for launching a user feedback survey for using controller 
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Figure 9: Application 2: Participants complete the Likert scale 
survey to rate their experience using controller and gaze 
pointing in the space invader game. (top) Participants start 
by using controller to select answers, with controller ray as 
feedback. (bottom) Once online calibration is good enough, 
gaze pointing controls the reticle, cursor becomes a white 
dot during gaze pointing. Participants could use their eyes to 
select answers, click on the bottom "Next" button to advance, 
and complete the survey using online calibrated gaze. 

pointing; one for launching the user feedback survey for gaze point-
ing; and one for launching a demographic survey. The survey’s 
answers are each 2◦ in diameter. 

Initially, participants used controller pointing to select answers. 
Once online calibration reached the accuracy threshold (1.2◦), the 
survey transitioned to gaze pointing. Note that in this application 
we reduced even further the error threshold to achieve higher 
precision. 

In this application participants were offered the option to manu-
ally switch back to controller pointing from gaze pointing by push-
ing a key on the joystick on the controller. Participants could use this 
option when gaze pointing was not accurate enough. Once clicked, 
the Online-EYE would take over again, assigning the pointing mode 
depending on the dynamic accuracy evaluation. We recorded the 
number of times participants manually switched to controller point-
ing. 

6.2 Results 
6.2.1 Performance. 21 out of 22 participants were able to turn on 
Online-EYE in the Space Invader and the subsequent NASA TLX 
and demographics surveys. The mean number of clicks to turn on 
Online-EYE is 8.80 (SD:4.52) in the Space Invader and 9.50 (SD:7.02) 

Figure 10: (left) Nasa TLX Likert scale results. (right) Hand 
rotations performed during the space invaders 

clicks for the surveys. The number of times the system automati-
cally switched from Online-EYE back to controller due to detecting 
higher than threshold error was 3.33 (SD:2.25) times for the Space 
Invader and 1.95 (SD:2.80) times for the survey. Participants seldom 
manually switched to controller from Online-EYE, on average 0.25 
(SD:0.43) times for the survey, showing a quite stable accuracy on 
the Online-EYE system. 

6.2.2 Awareness of Transitions. In the Space Invader game, we 
also explore how participants perceived the automatic transition 
from controller to gaze, without telling them before the study that 
gaze was going to take over when online calibration is ready. In-
stead, we let them figure out how cursor was controlled, and when 
Online-EYE was switched on. Most participants realized it was gaze 
pointing immediately. Three participants realized after 3-5 clicks, 
and two participants never realized until the experimenter told 
them. Showing that the transition can be quite seamless for users. 

6.2.3 Hand Motions. We measured hand rotation as the cumula-
tive angular displacement of the handheld controller per trial. Using 
Online-EYE on the space invaders, participants showed a significant 
reduction in hand rotation compared to using controller (Figure 10), 
from 30.54◦ (SD:8.97) to 17.85◦ (SD:11.34) (t-test=3.92, p=0.0003, 
df=40). We found no significant differences between trial comple-
tion time, head rotation, or error rate between using controller or 
Online-EYE during the Space Invader game (𝑝 > 0.05). These effects 
are presumably unconscious as most participants were unaware 
that they had switched out of the controller to Online-EYE. 

6.2.4 NASA TLX. The NASA TLX survey (Figure 10) showed sig-
nificant difference in Performance rating, participants felt they 
performed better using controller 1.95 (SD:0.65) than Online-EYE 
2.76 (SD:1.38) (𝑊 = 10.5, 𝑝 = 0.023). No significant difference be-
tween controller and Online-EYE was found for mental, physical, 
temporal demands, effort, or frustration (𝑝 > 0.05). 

6.2.5 Qualitative Preferences. Overall, 14 out of 21 participants 
preferred Online-EYE in one or both the applications, 3 of them 
preferred Online-EYE only for the game but not survey, 2 of them 
preferred Online-EYE only for the survey but not the game. 

The reasons participants preferred gaze-and-pinch included that 
it was faster (11 participants), accurate (7 participants), easy and 



Online-EYE: Multimodal Implicit Eye Tracking Calibration for XR CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

natural (5 participants) and required less hand movement (4 partic-
ipants). 

Accuracy was still the main reason participants preferred con-
troller. 2 participants mentioned at edges the accuracy was worse 
in Online-EYE. 5 participants mentioned they needed to compen-
sate when accuracy was off, by looking away from target so that 
cursor lands on target. While looking away to compensate allowed 
participants to complete that trial, it also prevented Online-EYE 
from learning the correct weights, because they were not looking 
at the target. 

Unfamiliarity with eye tracking was another reason for controller 
preference, which is not surprising as 19 of the 21 participants have 
never used an eye tracking device before. 

Five participants commented they needed practice to get used 
to gaze pointing, and three mentioned it got better with time. Two 
participants were "chasing" the gaze cursor and "went into a spiral" 
when they tried to look at the cursor and keep chasing it away. P14 
mentioned the hand-eye coordination required to operate Online-
EYE "I keep on thinking I need to blink to hit". P7 also commented 
the effect of blinking causes cursor to jitter as "I blink a lot". 

There are also comments about the specific implementation of 
the gaze cursor in this game. Three participants found the gaze 
cursor always visible to be distracting and caused eye strain, and 
that it was "weird" when it follows their eyes while reading (during 
survey). In order to avoid the “late-trigger error” [28] caused by the 
eyes moving away from target right before selection, we showed 
the cursor position as the most recent fixation, this trade-off be-
tween selection accuracy and delay is noticed by 5 participants who 
commented that there was a small lag in cursor movement. 

7 DISCUSSION 
This paper investigated the effectiveness of online calibration for 
eye tracking in VR, leveraging multimodal inputs to refine the 
calibration matrix continuously without interrupting user tasks. We 
compared the accuracy of online calibration to explicit, personalized 
calibration methods and found that online calibration achieved 
comparable performance within the interaction area. 

7.1 Online Implicit Calibration’s Advantages 
A key advantage of online calibration is its potential to reduce 
the need for explicit personalized calibration, allowing users to 
start tasks immediately. We simulated a generic eye tracking model 
that future HMDs could include out-of-the-box by having each 
participant begin the experiment with the previous participant’s 
calibration, introducing a diverse, randomized deviation from the 
generic model. Our results demonstrated a significant improve-
ment in accuracy compared to the generic model, supporting the 
feasibility of this approach. This could be also beneficial for shared 
headsets, potentially eliminating the time-consuming process of 
recalibrating for each user or session. 

In the applications, we demonstrated the dynamic evaluation of 
the eye tracking accuracy to automatically turn on gaze-and-pinch 
when online calibration reached accuracy threshold. Participants 
experienced the benefit of speed, reduced hand movement that gaze-
and-pinch affords. Additionally, online calibration can effectively 
calibrate frequently used interaction points, such as the "next" 

buttons in the surveys application, This can save effort and improve 
overall user experience, especially when these points are frequently 
accessed. Online-EYE offers a significant advantage by enabling 
users to quickly turn on gaze-and-pinch functionality within 8-
9 clicks, as demonstrated in our applications. This streamlined 
process widens the applicability of eye tracking in XR, making it 
more accessible and user-friendly. 

7.2 Robustness Across Tasks 
To assess the impact of different interaction types, we explored 
the performance of online calibration with discrete, continuous, 
and typing tasks. Our findings revealed no significant differences 
between these interaction types, suggesting that online calibra-
tion is effective across a variety of user interactions. Specifically, 
we compared the performance of typing tasks with and without 
visible letter feedback (keyboard vs. password). We did not find a 
significant difference with visibility of input letters, which could 
represent task-related distractions. Moreover, we compared the 
performance of tasks with known target positions (survey) to those 
with unknown target positions (space invader game). Our results 
showed no significant differences, suggesting that the knowledge 
of UI positions does not substantially impact calibration accuracy. 
These findings strengthen the ecological validity of our tasks, as 
they represent a diverse range of real-world scenarios. 

In these UI experiments, we further tested H1 - people look at 
where they click, in naturalistic settings against diverse interaction 
types. H1 posits a more general relationship between gaze and 
click behavior, considering target size and density, we observed 
larger offsets with larger targets. While buttons use cases being the 
point of departure for subsequent UI studies, we found significant 
transfer of the effect, even though the behavior differed across tasks. 
This aligns with previous research suggesting that eye gaze often 
leads hand movement. H1 holds in most button scenarios but may 
break under specific conditions. For example, in tasks like typing, 
where prior knowledge of UI layout plays a role, the hand may 
reach the target before the eyes. People may glance off-target for 
visual feedback, such as in operating sliders; and may look at the 
destination during drag-and-drop. 

The results suggest that, our approach of leveraging the optimal 
fixations based on UI interaction timing, is effective across many 
tasks, especially those requiring precise targeting and selection. 
For continuous tasks, the action of selecting the UI element still 
relies on precise aiming and clicking. While previous work has 
proposed effective smooth pursuit-based calibration [11, 55, 65], 
we are skeptical that it applied when UI is controlled by the user, 
because people tend to look ahead at the target [30, 31]. Future 
research could explore target position for additional calibration 
opportunities. 

Furthermore, we found no significant difference in calibration 
accuracy between tasks performed at 0.5m and 2m distances. Both 
groups of participants were able to calibrate and enable gaze-and-
pinch during the applications. This suggests task distances in the 
direct touch range does not significantly affect calibration accu-
racy, and online calibration could potentially benefit direct touch 
scenarios. 
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7.3 Generalizability to Other Input Modalities 
and the XR Spectrum 

Online-EYE could be extended to other input modalities beyond 
controllers, such as direct touch and mouse. The system leverages 
the natural human tendency to look at a target before interacting 
with it, regardless of the input device. While the study focused on 
controllers due to their robustness and reliability compared to hand 
tracking, the underlying principle of gaze preceding action remains 
applicable to other input modalities. The coordination of eyes and 
hand has been studied extensively [14, 27, 30, 31, 61], with HCI 
works demonstrating their application in various context including 
selection, mid-air gesture, and 3D interaction [35, 36, 45, 67]. 

Our approach relies on interacting with UI elements to calibrate 
the eye tracker. These elements have known positions in both 
AR and VR. In AR, UI elements can be part of the OS menu or 
contextually rendered near real-world objects [10]. The principles of 
eye-hand coordination remains the same across the XR continuum, 
and we expect the results to be generalizable to any type of XR 
where the position of the UI elements are known. 

7.4 Limitations 
While online calibration offers the advantage of continuous adapta-
tion, it can be susceptible to overfitting to the specific interaction 
area, potentially limiting its accuracy in other regions of the VR 
environment. To mitigate this, UI elements could be strategically 
placed to encourage calibration across a wider FOV. It is possible 
that participants improved their ability to fixate on the evaluation 
targets over time, potentially contributing to lower errors in the 
later evaluation for the explicit calibration. Explicit calibration is 
evaluated at the end of the study because participants started with 
the previous participant’s calibration as a proxy for a generic gaze 
model, and that every new calibration irreversibly replaces the 
previous calibration. However, the primary reason for the higher 
accuracy of explicit calibration is likely due to its coverage of the 
entire FOV, while implicit calibration only covered the area spanned 
by the UI elements, and eye tracking is evaluated over the larger 
FOV. We did not find significant difference between implicit and 
explicit calibration accuracy, when gaze is inside the UI interaction 
area. 

Another challenge is user’s compensating behavior when eye 
tracking accuracy is not good enough, users may intentionally look 
away from the target to make the gaze cursor land on the target. 
This can hinder the learning process for online calibration. During 
compensation, the user is not looking at the target, therefore the 
calibration matrix will never learn the correct weights with these 
positions. Additionally, participants may be reluctant to use manual 
switching to turn on controller input, preferring to compensate 
with eyes instead and stay in gaze mode. 

To mitigate these limitations, future research could explore cur-
sor refinement techniques [23, 29, 57] and ways to fall back onto 
manual input [58]. Alternatively, the coexistance of the controller 
pointer and gaze pointer could allow users to seamless decide when 
to toggle between the two inputs [63]. 

Although Online-EYE enabled gaze-and-pinch within 8-9 clicks 
in the Space Invader game, it is important to consider the visual 
characteristics of UI elements in the calibration context. The icon of 

the alien has many salient points, and users may be more likely to 
look at the mouth than the eyes. This could lead to their true gaze 
being closer to the bottom of the UI than the center, contributing 
to calibration error. While we did not explore the effects of visually 
salient UI appearances or different visual feedback mechanisms, 
these factors could potentially further enhance the effectiveness of 
online calibration. 

8 CONCLUSION 
This research presents Online-EYE, a multimodal approach to im-
plicit calibration of eye tracking in XR that refines the calibration 
matrix continuously without interrupting user tasks. Our findings 
demonstrate the effectiveness and accuracy of implicit calibration, 
achieving comparable performance to traditional explicit calibra-
tion methods across a range of tasks and applications. Online-EYE 
represents a significant step towards improving the user experi-
ence and usability of eye tracking in XR, users can easily enable 
gaze-and-pinch functionality in as few as 8-9 clicks, potentially 
eliminating the need for explicit calibration and providing a more 
seamless integration with other input modalities. 

All in all, both our scientific exploration of the underlying hy-
potheses as well as the application built on these foundations high-
light the potential for implicit calibration as a contesting alternative 
to explicit calibration of Eye Tracking (ET), with the capacity to 
revolutionize how we have done gaze calibration to date. 
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Figure 11: a) No significant differences were found for gaze-target, gaze-hit point offsets between the target densities. b) No 
significant differences were found for gaze-target, gaze-hit point offsets between the target render distances 

a b c d e 

Figure 12: No significant differences were found for: a)0.5m and 2m task distance. b) best or last fixation for the calibration 
timing. c) Discrete, continuous, and typing task types. c). Inside or outside interaction area of the discrete tasks. d) inside or 
outside the interaction area of the typing tasks. 
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Figure 13: Interaction Region Convex Hulls for Different Tasks for an example participant. Convex hulls are fitted from gaze 
samples collected during the UI tasks, overlaid over evaluation target positions. 
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