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Figure 1: MobilePoser uses any subset of consumer mobile devices (phones, watches, earbuds) available to estimate full-body 
pose and global translation. 

ABSTRACT 
There has been a continued trend towards minimizing instrumen-
tation for full-body motion capture, going from specialized rooms 
and equipment, to arrays of worn sensors and recently sparse iner-
tial pose capture methods. However, as these techniques migrate 
towards lower-fdelity IMUs on ubiquitous commodity devices, like 
phones, watches, and earbuds, challenges arise including compro-
mised online performance, temporal consistency, and loss of global 
translation due to sensor noise and drift. Addressing these chal-
lenges, we introduce MobilePoser, a real-time system for full-body 
pose and global translation estimation using any available subset 
of IMUs already present in these consumer devices. MobilePoser 
employs a multi-stage deep neural network for kinematic pose esti-
mation followed by a physics-based motion optimizer, achieving 
state-of-the-art accuracy while remaining lightweight. We conclude 
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with a series of demonstrative applications to illustrate the unique 
potential of MobilePoser across a variety of felds, such as health 
and wellness, gaming, and indoor navigation to name a few. 
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1 INTRODUCTION 
Full-body motion capture has numerous applications in gaming, 
ftness, and virtual and augmented reality (VR/AR), enabling im-
mersive experiences and context-aware interactions. While vision-
based approaches for 3D human pose estimation have shown great 
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Figure 2: Real-time global pose estimation powered by MobilePoser: (A) Person with smartwatch (left wrist) waving their hands. 
(B) Person with smartwatch (left wrist) performing jumping jacks. (C) Person wearing a smartwatch (left wrist) and carrying a 
phone in their right pocket running. 

promise, they require subjects to be within the camera’s feld of 
view, limiting their practicability for mobile and on-the-go applica-
tions. In contrast, inertial measurement unit (IMU) based techniques 
ofer an attractive alternative, enabling less intrusive and occlusion-
free user digitization [3]. 

Commercial systems such as Xsens [45] use up to 17 special-
purpose sensors to provide highly accurate pose estimations. How-
ever, such approaches are intrusive, making them undesirable for 
everyday use. Consequently, there has been a trend towards mini-
mizing instrumentation. Sparse inertial pose capture methods, such 
as TransPose [49] and DIP [14], use 6 IMUs to achieve a balance 
between accuracy and practicality. Yet, these methods still require 
expensive and special-purpose IMUs attached to specifc body joints. 
To enable full-body motion tracking without any external infras-
tructure, IMUPoser [28] leverages IMUs in devices we already carry 
around with us, namely smartphones, smartwatches, and earbuds. 
These commodity devices, however, use lower-fdelity IMUs, which 
compromises online performance, temporal consistency, and global 
translation estimation. 

In this work, we present MobilePoser, a real-time user digitiza-
tion technique that tracks both poses and global movement (referred 
to as translation) using consumer devices (Figure 1) such as watches, 
phones and earbuds. To enable on-the-go motion tracking with-
out any external infrastructure, we must address a set of unique 
challenges. First, the number of instrumented points is dynamically 
changing and sparse (at most three devices, with as few as one) 
1, making the problem highly under-constrained. Second, IMUs 
do not directly measure positional data, making global translation 
tracking non-trivial. Additionally, noise and drift from the low-cost 
IMUs found in commodity devices complicates pose and translation 

1Note, we count the left and right earbuds as a unifed single IMU stream 

estimation. Finally, such a system should operate directly on-device 
for real-time use, anywhere, anytime. 

MobilePoser tackles these challenges by employing a multi-
stage approach. For pose estimation, it utilizes a deep neural net-
work (DNN) to predict full-body pose from the available IMU data, 
followed by a physics-based optimization step to ensure spatio-
temporal consistency and plausible kinematics. This greatly helps 
resolve ambiguous instrumented joint motion profles, such as dif-
ferentiating between waving (Figure 2 A) versus jumping jacks 
(Figure 2 B) from only a single smartwatch on the wrist. To aid 
in generalizability, the model is trained on a large dataset of syn-
thesized IMU measurements generated from high-quality motion 
capture (MoCap) data. For global translation estimation, Mobile-
Poser employs a hybrid approach that fuses predictions from a 
foot contact-based method and a DNN-based method that directly 
regresses the root joint velocity. This combination enables accurate 
and robust translation estimation, even in challenging scenarios 
where both feet are in motion together (Figure 2 C). Importantly, 
MobilePoser is optimized to run on-device, achieving real-time per-
formance of 60 frames per second on a smartphone (iPhone 15 Pro), 
making it suitable for mobile applications. 

In summary, MobilePoser makes the following key contributions: 

(1) It presents a novel framework for inertial translation estima-
tion using consumer devices, enabling accurate tracking of 
global movement without specialized hardware. 

(2) It achieves state-of-the-art full-body pose estimation across 
various on-body confgurations of commodity IMU devices, 
demonstrating robust performance with as few as one and 
up to three wearable devices. 

(3) It provides an open-source implementation that runs in real-
time on edge devices, making it accessible and practical for 
widespread use. 
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System 
Xsens [45] 

# Inst. Joints 
17 

FPS 
120 

Consumer Device 
× 

Translation 
✓ 

MPJVE (cm) 
-

Jitter (102�/�3) 
-

SIP [43] 6 60 × ✓ 7.7 3.8 
DIP [14] 6 29 × × 8.9 30.13 
TransPose [49] 6 90 × ✓ 7.1 1.4 
PIP [48] 6 60 × ✓ 5.9 0.24 
IMUPoser [28] 1–3 25 ✓ × 12.1 1.9 
MobilePoser (our work) 1–3 60 ✓ ✓ 10.6 0.97 

Table 1: Comparison with key prior work on the DIP-IMU dataset. 

2 RELATED WORK 

2.1 User Digitization with External Sensors 
Commercial motion capture systems such as OptiTrack [29] and 
Vicon [41] use specialized hardware, such as multiple calibrated 
high-speed infrared cameras, to track retrorefective markers at-
tached to a user’s body. Such setups are commonly used in games, 
movies and character animations that require millimeter accuracy 
and are the gold standard of motion capture. The expensive infras-
tructure required by commercial systems, makes them impractical 
for everyday use. Therefore, much research has been devoted to 
instrumentation-free approaches using monocular cameras. Such 
approaches generally rely on RGB [9, 13, 36] or depth [27] cameras 
based computer vision techniques to predict body pose. 

There also exists specialized external hardware for pose tracking 
in Extended Reality (XR). For example, the HTC Vive [2], PlaySta-
tion VR [1] and Oculus Rift [32] track the head, handheld controllers 
and other limb-borne accessories using external sensor base sta-
tions for Virtual Reality (VR) applications. The un-sensed joints are 
estimated with inverse kinematics [15] or learning-based methods 
[16, 35]. Other non-optical external approaches for pose estimation 
include capacitive sensing [50], magnetic felds [31, 33], RF [51], 
and mechanical linkages [39]. 

2.2 User Digitization with non-IMU Worn 
Sensors 

Wearable sensors provide a portable and fexible alternative to 
external sensors. For example, MI-Poser [7] uses magnetic track-
ing in wristbands and AR glasses to estimate upper-body poses. 
Other works have explored wrist-worn cameras [20, 44], EMG sen-
sors [24], EIT sensors [22], wrist-worn antennas [19] and depth 
sensor armbands [10]. However, these works focus solely on cap-
turing the motion of specifc body parts (e.g., wrist or upper-body). 

To capture full-body motion, a popular approach is to use body-
mounted cameras coupled with computer vision techniques [5, 38]. 
Other works have explored diferent sensor technologies such as 
ultrasonic sensors [42] and RFID [18]. Nevertheless, these works 
require users to wear sensors they do not already have. Pose-On-
The-Go [4] addresses this by estimating full-body pose via extreme 
sensor fusion, leveraging a phone’s front and rear cameras, thus 
requiring no special instrumentation. However, its computationally 
expensive and relies heavily on heuristics to power body poses, 
often resulting in unnatural motions. MobilePoser diferentiates 
itself by focusing on full-body pose estimation using power-efcient 

IMUs already found in consumer devices, such as smartphones, 
smartwatches, and earbuds. 

2.3 User Digitization with IMU Worn Sensors 
Commercial motion capture systems, such as Xsens [45], use a large 
number of inertial sensors (typically 17) strapped to the body to 
provide high-quality motion capture. These setups consist of ho-
mogeneous, high-grade IMUs that are calibrated for noise and have 
known positions on the body, resulting in a less ill-posed problem 
compared to using sparse, heterogeneous sensors. However, such 
an approach is highly inconvenient and intrusive for everyday use. 

To address this limitation, researchers have explored reconstruct-
ing human motions from a reduced number of sensors. Works 
such as SIP [43], DIP [14], PIP [48], TIP [17], and TransPose [49] 
have demonstrated the feasibility of using only 6 commercial-grade 
Xsens IMU sensors for full-body motion capture. Works have fur-
ther explored integrating other input modalities (e.g. UWB [8] and 
egocentric images [47]) in addition to the 6 IMUs for increased 
performance. All these approaches leverage the homogeneity and 
known calibrated positions of the sensors to achieve accurate pose 
estimation. However, even 6 sensors can be cumbersome for on-
the-go applications, especially those that require passive sensing. 

Recent research has investigated even sparser IMU confgura-
tions using commodity devices. IMUPoser [28], which is most 
closely related to our work, performs pose estimation using any 
combination of smartphone, smartwatch, and earbuds. While IMU-
Poser tackles the challenges of heterogeneous sensor quality for 
pose estimation, it lacks global translation due to IMU noise and 
drift, and contains unrealistic spatio-temporal motion artifacts. Ad-
ditionally, IMUPoser runs on a laptop at 25Hz, limiting its practi-
cality for real-time mobile applications. 

In contrast, MobilePoser addresses these limitations by demon-
strating improved pose estimation accuracy on widely used bench-
marks while also estimating global translation (see Table 1). Fur-
thermore, our system is designed to run fully on-device, achieving 
real-time performance of 60 fps on edge mobile devices. This enables 
MobilePoser to provide a more practical and accessible solution for 
on-the-go motion capture using commodity devices. 

3 MOBILEPOSER 
Estimating a user’s full-body pose from a sparse set of IMU ob-
servations is a severely under-constrained problem as it aims to 
infer a high-dimensional quantity, i.e., the full-body pose, from low-
dimensional observations that only capture partial motion at each 
instrumented point. Moreover, multiple possible solutions could 
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Figure 3: MobilePoser system overview. MobilePoser accepts any available subset of IMU data from the user and masks absent 
devices by setting their values to zero. The IMU data is then fed into two main modules: (1) Pose Estimation, which frst 
estimates joint positions followed by joint rotations, and (2) Translation Estimation, which combines foot-ground contact 
probabilities with a direct neural network-based approach to regress global velocity. Finally, a Physics Optimizer refnes the 
predicted joint rotations and global translation to ensure they satisfy physical constraints. 

explain the observed data, making it challenging to determine the 
correct pose. To tackle these challenges, we introduce MobilePoser, 
a system that leverages data-driven learning and physics-based 
optimization to estimate accurate and plausible full-body poses 
and global translations from sparse IMU inputs. Figure 3 provides 
an overview of our pipeline, which we describe in detail in the 
following sections. 

3.1 System Input 
MobilePoser takes as input acceleration and orientation readings 
from IMUs across any subset of three consumer devices: smart-
phones, smartwatches, and earbuds. Each of these devices can be 
placed at diferent body locations, resulting in various possible 
combinations. For instance, a smartphone can be stored in the 
left or right pocket, held in the left or right hand, placed next to 
the head during a call, or not carried by the user at all. Similarly, 
smartwatches can be worn on either wrist or not worn at all, while 
earbuds can be worn, placed in a charging case stored in either 
pocket, or not carried by the user. 

Following IMUPoser [28], we consider 24 plausible device-location 
combinations across fve body locations: right pocket, left pocket, 
right wrist, left wrist, and head. These combinations cover the vari-
ous ways users might carry or wear their devices throughout the 
day. Regardless of the input device combination, our model expects 
IMU data from the fve predefned body locations. 

The IMU signal at each location consists of acceleration (3 values) 
and orientation (a 3×3 rotation matrix), resulting in a total of 12 IMU 
values per location. Across all fve locations, this yields an input 
vector � ∈ R60. However, since at any given time only a subset of 
1–3 devices may be present, data from absent devices is masked 
and set to zero. This masking approach allows us to build a unifed 
model that can handle the varying number of available devices and 
their changing on-body location seamlessly. This further eliminates 

the need for training separate models for each possible combination, 
making the system more practical and efcient. 

3.2 Full-Body Pose Estimation 
To learn a mapping from IMU input to full-body pose, we employ a 
data-driven, multi-stage neural network approach. Specifcally, our 
pose estimation network consists of two submodules: Joint predictor 
(F ����� ) and Rotation predictor (F � ). More specifcally, F ����� esti-
mates joint positions as an intermediate task and F � solves for the 
joint angle orientations. Both submodules use a bidirectional LSTM 
(bi-LSTM), to model both spatial and temporal information [14]. 
We input data into both submodules in a sliding-window fashion 
with window length � . 

3.2.1 Joint Pose Estimation (F ����� ). This module estimates the 
joint positions from a sequence of IMU measurements. We explic-
itly estimate joint positions as an intermediate step, as it helps 
extract useful information from linear accelerations due to its lin-
ear correlation with joint positions [49]. The input to F ����� is 
���� (� ) = [�� −� , . . . , �� ], where � is the current time step and � is 
the time window length. The output are the root (pelvis) relative 3D 
positions of the 24 SMPL body joints [25] �(�) = [�� −� , . . . , �� ] ∈ 
R� ×72. The loss function used to train this network is: 

L ����� = ∥p − p�� ∥2 (1)2 

where the subscript �� denotes the ground truth and � represents 
the full-body SMPL joint positions. 

3.2.2 Joint Rotation and Body Mesh Estimation (F � ). Here we em-
ploy a neural kinematic estimator to regress joint rotations from 
the previously estimated positions. We concatenate the joint co-
ordinates from F ����� with IMU measurements, which serves as 
the input to F � . Note, while the SMPL body encodes 24 joints, 
only 18 are relevant from a rotation prediction perspective as the 
fngers, wrist and toes are independent of the on-body IMUs and 
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are hence set to identity rotation matrices [49]. The outputs of the 
network are the 18 root relative joint orientations represented as 
6D rotations: � (�) = [�� −� , . . . , �� ] ∈ R� ×108. 

Our joint rotation loss consists of three terms: L��� , L��� , L ���� . 
The loss term L��� is a standard L2 loss from the ground truth 
joint rotations. The term L��� penalizes error accumulating along 
the kinematic chain. Finally, L ���� promotes temporally smooth 
predictions, where ���� (� ) = �� −3 + 3�� −2 − 3�� −1 +�� is a function 
that computes the jerk of a signal � at time step � , penalizing the 
deviation between neighboring frames [49]. 

Our combined joint rotation loss function can be represented as, 

L� = L��� + L��� + �L ���� (2) 

L��� = ∥� − ��� ∥22 (3) 

L��� = ∥FK(� ) − p�� ∥2 (4)2 

�∑ 
= ���� (� ) (5)L ���� 

� 

where �� (·) is the forward kinematics function, that computes 
joint coordinates from joint rotations. Given the joint rotations, 
the parametric SMPL body model generates a corresponding body 
mesh with 6890 vertices. 

3.3 Global Translation Estimation 
Translation estimation from IMUs is challenging as they lack di-
rect distance measurements. Moreover, IMUs are prone to noise 
and biases, which causes techniques such as double-integration of 
acceleration to rapidly accumulate errors [46]. Therefore, inspired 
by prior work [23, 48, 49], we estimate per-frame velocity of the 
root joint using two submodules: a foot-ground contact (� � ) and 
a neural network based root velocity estimator (�� ). We fuse the 
output of the two submodules to obtain a fnal estimate of global 
translation. 

3.3.1 Foot-Ground Contact based Root Velocity (� � ). Here we esti-
mate the probability of each foot contacting the ground indepen-
dently using a bi-LSTM network. The input to the model is the 
concatenated vector of joint positions and IMU measurements. The 
output of the network is the likelihood that each foot is contact-
ing the ground, denoted as � � ��� = 

� 
�� � ��� , �� � ��� 

� 
∈ R2. The 

foot with the higher foot-ground contact probability is defned 
as the supporting foot, � = max{�lfoot, �rfoot}. The root velocity, 
� � (�) ∈ R3, is then computed as the coordinate diference of the 
supporting foot between consecutive frames. This approach helps 
capture natural body motions, as movement is signifcantly infu-
enced by the supporting foot’s dynamics [37]. For example, when 
walking, the body’s movement is propelled forward and stabilized 
by the foot contacting the ground. The network is trained using 
binary cross-entropy loss. 

3.3.2 Neural Network based Root Velocity (�� ). While the support-
ing foot contact based method yields plausible human movement, it 
inherently fails when both feet are not contacting the ground (e.g., 
when running or jumping). To accommodate such cases, we esti-
mate per-frame root velocity directly using a neural network. We 
again use the predicted joint coordinates and IMU measurements 
as input. Compared to previous submodules that use a bi-LSTM for 

prediction, this module uses a unidirectional LSTM due to its ca-
pacity to capture longer historical context. The output is per-frame 
root velocity, denoted as �� (�) ∈ R3. The network is trained using 
a cumulative L2 loss [49]. 

3.3.3 Module Fusion. Both modules ofer diferent trade-ofs in 
terms of predicting translation. Supporting foot provides more re-
alistic estimates by leveraging human kinematics but fails when 
both feet are of the ground. On the other hand, directly estimat-
ing root velocity is more general but is highly prone to unnatural 
movements such as foot sliding [52]. To achieve the benefts of 
both, we adopt the heuristic-based fusion approach, inspired by 
TransPose [49]. In summary, when the foot contact � is higher than 
an upper-threshold �, we are confdent of ground contact by a foot 
and hence we rely on (� � ) for translation estimation. When the 
foot contact is below a lower-threshold, �, we rely on (�� ). For in-
termediate probabilities, we fuse both velocity estimations using a 
weighted sum, to output the fnal global velocity estimate � : 

� − � � − � 
� = �� + � � (6)

� − � � − � 

Following previous work [49], we use � = 0.5 and � = 0.9. 

3.4 Physics-Aware Refnement 
Our pose and translation estimation networks output the user’s 
global pose based on a history of IMU measurements. When trained 
on sufciently large amounts of data, the full-body pose estimation 
and global translation estimation neural networks learn the human 
motion manifold and produce realistic poses. However, despite the 
best modeling eforts, the outputs may still contain inter-mesh 
penetration, temporal artifacts such as jitter, foot-foor penetration 
and foot skating. To address these issues, we add an of-the-shelf 
physics motion optimizer [48]. The physics optimizer uses two 
proportional derivative (PD) controllers to compute the desired 
acceleration of the simulated character that best reproduces the 
estimated pose while satisfying physical constraints, such as the 
equation of motion [12]. The inputs to the physics optimizer are the 
estimated joint angles � , the foot-ground contact probabilities � � ��� , 
and the neural network based root velocity �� . The outputs are the 
optimized joint angles and global translation with reduced jitter 
and foot-ground penetration (Figure 4). For a detailed overview of 
the physics optimizer, we refer readers to PIP [48]. 

Figure 4: Demonstration of the physics optimizer’s ability to 
reduce foot-ground penetration. 
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3.5 Real-time Inference 
We implement proof-of-concept applications in iOS, using an Apple 
iPhone 15 Pro, Apple Watch Series 9 and Apple AirPods Pro. The 
iPhone, Apple Watch and AirPods sample IMU data at 60, 60 and 
25 Hz respectively. For uniformity, we convert all the IMU data to 
60 Hz by upsampling the AirPods. 

We employ the active device selection strategy proposed by 
IMUPoser [28], wherein the UWB and inertial data is used to track 
the active devices and their on-body locations. For initial proto-
typing, the Apple Watch and AirPods communicate over Blue-
tooth to the iPhone, which streams data to a MacBook Air 2022 
via socket. Post connection, a small calibration step is performed 
to align the IMU measurements with the training data, similar to 
prior work [14, 28, 49]. Following the setup, data is streamed to 
the laptop for pre-processing, inference and then relayed to Unity 
applications for visualization. 

To further prototype an on-device edge model, we convert our 
trained PyTorch model into CoreML with mixed precision quan-
tization and evaluate its performance. On an iPhone 15 Pro, our 
model incurs ~14ms model inference time running at 60 Hz, capped 
by input IMU sampling rate. 

4 DATA SYNTHESIS AND MODEL TRAINING 
Model training requires a large collection of synchronized IMU mea-
surements and corresponding SMPL body poses. We leverage the 
AMASS [26] MoCap dataset, which provides an extensive collection 
of such data(~40 hours), including translation. 

4.1 Full-Body Pose Estimation 
Our models expect IMU measurements as input. We synthesize IMU 
data following the approach proposed in DIP [14]. In summary, we 
place virtual sensors on the corresponding SMPL mesh vertices (left 
and right wrists, left and right pockets, and the head) and obtain 
joint rotations via limb orientations, while acceleration values are 
computed using fnite diferences. During training, we scale down 
the acceleration by a factor of 30 �/�2, such that its values are on a 
similar scale to orientations, for better learning. Of note, we do not 
normalize our IMU measurements to a root joint (e.g., the pelvis), 
as the number of available devices can vary. 

4.2 Global Translation Estimation 
The translation estimation networks require (1) binary labels for 
foot-ground contact states and (2) per-frame root velocity values. 
To generate foot-ground contact states, we assume that a foot in 
contact with the ground displays very little movement between 
frames. Therefore, when the movement of one foot between con-
secutive frames is less than a threshold �, then we consider it to 
be contacting the ground. We set � = 0.008, following previous 
work [49]. To train �� , we require per-frame root velocities. Since 
the AMASS dataset provides root position data, we can compute 
root velocities as the coordinate diference of the root position 
between consecutive frames. 

4.3 Training Setup and Procedure 
We train our models on a NVIDIA A40 GPU, which takes roughly a 
day for all modules and device-combinations. In total, our model has 

~6.7M trainable parameters. Each module is trained separately using 
a batch size of 256 and the Adam optimizer [21] with a learning 
rate of lr = 10−3 for 80 epochs. We also apply a gradient clipping 
with norm of 1, to prevent the gradients from exploding. 

During training of F � , �� , and � � , we add Gaussian noise with 
� = 0.04 to the joint positions to prevent overftting and deal with 
prediction errors from F ����� . We empirically set � = 10−5 when 
training F � , to encourage temporally smooth predictions. 

5 EVALUATION 
We systematically isolate and analyze the efcacy of MobilePoser 
across diferent datasets, evaluation metrics and protocols. We show 
both qualitative and quantitative results, and also run ablation 
studies to evaluate our translation estimation design choices. 

5.1 Datasets 
We evaluate MobilePoser on three real-world, inertial datasets, 
summarized in Table 2: 

• DIP-IMU [14] contains data from 10 participants, collected us-
ing commercial-grade Xsens [45] IMUs at 60 Hz. It includes a 
rich variety of activities such as arm raises, stretches, lunges, 
squats, and punches. However, DIP-IMU does not contain 
global translation data. 

• TotalCapture [40] provides real IMU measurements with 
ground-truth pose and translation, captured using commer-
cial Xsens IMUs at 60 Hz. Following PIP [48], we re-calibrate 
the acceleration measurements to account for constant bias. 

• IMUPoser [28] is collected from 10 participants using consumer-
grade devices: an iPhone 11 Pro, Apple Watch Series 6, and 
AirPods, at 25 Hz. It provides ground-truth pose and global 
translation data. 

5.2 Full-Body Pose Estimation 
5.2.1 Evaluation Metrics. Like prior work, we use the following 
evaluation metrics for pose estimation (lower is better for all): 

• Mean Per Joint Rotation Error (MPJRE): Measure of mean 
angular error across all root aligned joints in degrees (°). 

• Mean Per Joint Position Error (MPJPE): Measure of mean 
Euclidean distance error across all root aligned joints in 
centimeters (cm). 

• Mean Per Joint Vertex Error (MPJVE): Measure of mean Eu-
clidean distance error across all root aligned vertices of the 
SMPL body mesh in centimeters (cm). 

• Mean Per Joint Jitter (Jitter): Measure of mean jerk across all 
body joints of the predicted motion in �/�3. 

We use MPJVE as our primary metric of evaluation for ease of 
comparison with prior work [28]. 

Dataset Capture Device Translation Data FPS 
DIP-IMU Commercial × 60 Hz 
TotalCapture Commercial ✓ 60 Hz 
IMUPoser Consumer ✓ 25 Hz 

Table 2: Real-world IMU datasets for MobilePoser Evaluation. 
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Figure 5: Comparison of MobilePoser’s Full-Body Pose Es-
timation Error across diferent Evaluation Protocols on the 
DIP-IMU, IMUPoser and TotalCapture dataset respectively. 

5.2.2 Evaluation Protocol. We outline three evaluation protocols 
for training and fne-tuning to evaluate MobilePoser’s efcacy 
across diferent data sources and noise profles. 

• Base Model: We train our model on the synthetic data gen-
erated on the AMASS dataset. 

• Finetune DIP-IMU: Like prior work, we train on AMASS 
and then fne-tune on 8 DIP-IMU participants. The 2 holdout 
participants are used for testing the Finetune DIP-IMU model 
on the DIP-IMU dataset. 

• Finetune IMUPoser: We train on AMASS and fne-tune on 
the frst 8 IMUPoser participants. The 2 holdout participants 
are used for testing the Finetune IMUPoser model on the 
IMUPoser dataset. 

5.2.3 Accuracy across Datasets. Figure 5 shows our full-body pose 
estimation accuracy for all three protocols across the three datasets 
listed in Section 5.1. Averaged across all three datasets, the MPJVE 
for the Base Model, Finetune DIP-IMU and Finetune IMUPoser pro-
tocols are 11.89, 11.73 and 11.33 cm respectively. It is interesting to 
note that the addition of commercial-grade IMU data (Finetune DIP-
IMU) only improves accuracy by 1.3% over the base model, while 
the addition of noisy IMU data from consumer devices (Finetune 
IMUPoser) results in a bigger improvement of 4.7%. 

5.2.4 Accuracy across Activities. We further analyze results on 
diferent activities on the IMUPoser dataset, as it provides activity 
label meta-data. MobilePoser’s accuracy generalizes across most 
everyday activity contexts: the error (MPJVE) for locomotion is 8.2 
cm (walking 7.6 cm, jogging 8.8 cm), exercises is 10 cm (kicking: 
7.5 cm, jumping jacks: 11.1 cm, boxing: 11.5 cm), sitting is 11.5 cm 
and freestyle motions such as tennis and basketball are 9.1 cm and 
11.7 cm respectively. The accuracy degrades for postures with the 
user lying/facing down, e.g. push-ups have higher error of 16.1 cm. 

5.2.5 Comparison with prior work. To aid in direct comparison 
with prior work [14, 28, 48, 49], we now make use of the Finetune 
DIP-IMU evaluation protocol, that is training a base model on the 
synthetic IMU data from AMASS and fne-tuning it on the 8 par-
ticipants from DIP-IMU dataset. Tables 1 and 3 ofer a quantitative 

System # Inst. Joints MPJRE MPJVE Jitter 
DIP 6 17.2° 11.2 3.62 
TransPose 6 12.8° 7.4 0.95 
PIP 6 12.1° 6.5 0.20 
IMUPoser 1–3 25.6° 15.4 1.30 
MobilePoser 1–3 23.7° 12.6 0.55 

Table 3: Comparison with key prior work on the TotalCap-
ture dataset. 

comparison against key prior work, evaluated on the DIP-IMU 
and TotalCapture, dataset respectively. Given that our system tar-
gets a very sparse confguration of IMUs (1-3), it is unsurprising 
that we perform worse than systems utilizing 6 IMUs, strategically 
placed around the body. On the DIP-IMU and TotalCapture dataset, 
compared to IMUPoser, which considers the same device-location 
combinations, we perform signifcantly better displaying a 12.4% 
and 18.2% decrease in vertex error respectively. 

On the IMUPoser dataset, Figure 7 (A) provides a detailed break-
down of accuracy for diferent on-body device locations. Averaging 
across the 1, 2 and 3 device conditions, MobilePoser outperforms 
IMUPoser by 24.1%, 14.2% and 8.7% respectively. Furthermore, Fig-
ure 7 (B) provides an accuracy breakdown for the instrumented 
and non-instrumented joints in comparison with IMUPoser. If a 
limb has an IMU placed on any part, we consider all the joints 
pertaining to it as instrumented joints, while the rest are marked 
as non-instrumented. MobilePoser is 18.1% and 17.4% better than 
IMUPoser for predicting instrumented and non-instrumented joints 
respectively. This can be seen in Figure 6 which depicts a visual 
comparison of our pose estimation with IMUPoser. 

Figure 6: Qualitative comparisons between our method and 
IMUPoser on the DIP-IMU and IMUPoser dataset. 
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Figure 7: MPJVE comparison between IMUPoser and MobilePoser (our system) on the IMUPoser Dataset for: (A) Diferent 
on-body device combinations (B) Instrumented vs Non Instrumented joints. 

5.3 Global Translation Estimation 
5.3.1 Evaluation Protocol. We evaluate our Global Translation Es-
timation module on the TotalCapture and IMUPoser datasets, as 
DIP-IMU lacks translation data. Like prior work [48, 49], we use 
the Finetune DIP-IMU protocol (Section 5.2.2), that is we train on 
AMASS and fne-tune on 8 participants of DIP-IMU to track the 
Root Translation Error (Euclidean norm of the cumulative distance 
errors within 1 second). 

5.3.2 Accuracy across Datasets and Body Regions. On the Total-
Capture and IMUPoser dataset, our mean root translation error 
across all device combinations is 27.55 and 17.63 cm respectively. 
Interestingly, for both IMUPoser and TotalCapture datasets, we 
observe only a slight decrease in error when increasing the number 
of devices from one to two (6.1%) and no signifcant improvement 
(4.0%) when increasing from two devices to three. Analysing the 
error across diferent body regions for the single device scenario 

(Figure 8) (A), we see that a device in the pocket has a much lower 
error (14.8 cm) compared to that on the wrist (25.7 cm) or the head 
(29.7 cm). This can be attributed to the legs capturing most of the lo-
comotion data during translation, resulting in marginal gains from 
sensors on the upper-body. Figure 8 (B) shows the the cumulative 
distance error over time. 

5.3.3 Ablation Study. We perform ablation studies to understand 
the impact of key components in our system and their efects on 
performance. At the core of our system lies a subtle yet powerful 
concept: higher-order digitization (e.g., body pose) improves lower-
order digitizations (e.g., steps). To quantify this idea, we run an 
ablation study of our translation estimation technique using both 
IMU data and the corresponding full-body pose inferred from it 
versus using only IMU data. Figure 9 summarizes our results. Our 
IMU-only, direct regression has an error of 21.4 cm across both 

Figure 8: (A) Comparison of cumulative translation error for 
diferent instrumented joints on the IMUPoser and Total-
Capture dataset. (B) Evaluation of cumulative distance errors 
with respect to time. 

Figure 9: Benefts of using high-order digitization (i.e., IMU 
inferred poses) for estimating global translation. 
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Figure 10: Example indoor navigation application where Mo-
bilePoser digitizes multiple users within an ofce space. 

datasets, while our integrated (IMU + IMU inferred pose) approach 
decreases error by 29.4% to 15.1 cm. 

Building on the multi-stage architecture, we further evaluate the 
impact of two additional components: jerk loss and physics refne-
ment. These elements were designed to enhance motion smoothness 
and physical plausibility. For the IMUPoser dataset, the jerk loss 
reduces jitter by 23.9% and translation error by 3.33%, but increases 
mean pose error by 0.05%. Further, the physics-aware refnement 
reduces jitter by 29.7% and translation error by 0.4%, but increases 
the mean pose error by 0.7%. The negligible increase in mean pose 
error is expected, as it may occasionally over-smooth the motion. 
This phenomenon is also seen in the PIP [48]. We believe that sig-
nifcant improvements in jitter and translation far outweigh the 
minimal increase in pose error, resulting in a more realistic motion. 

5.3.4 Comparison with prior work. To the best of our knowledge, 
no other works have explored both full-body pose and translation 
from such a sparse set of commodity IMUs. IMUPoser [28], which 
also targets consumer devices, does not estimate global translation. 
On the TotalCapture dataset, TransPose (6 IMUs) has a transla-
tion error of 12.8 cm while that of MobilePoser is 19.9 cm when a 
single IMU device is placed in the pocket. Unsurprisingly, a com-
mercial grade, 6 IMU-based system has higher accuracy due to their 
waist and knee mounted sensors, which capture larger ranges of 
locomotion compared to devices carried in the pocket. 

6 EXAMPLE USES 
MobilePoser enables full-body pose estimation with global motion 
tracking using devices that users already own, opening up a wide 
range of novel applications. This section showcases three proof-of-
concept applications in indoor navigation, gaming, and healthcare 
to illustrate MobilePoser’s unique capabilities and potential impact. 

6.1 Indoor Localization and Navigation 
To demonstrate MobilePoser’s potential in this domain, we scan 
an ofce space using the PolyCam [34] LiDAR scanner app with 

Figure 11: In this table tennis game users can move around 
the table freely and use their wrist-instrumented hand to 
control their racket. 

an Apple iPhone 15 Pro. As shown in Figure 10, multiple users 
walk through the virtual ofce space, with their interactions and 
movements seamlessly digitized and represented in real-time. Here, 
one user has a phone in their pocket and a watch on their wrist, 
while the other two only have a phone in their pocket. By lever-
aging the IMUs in these consumer devices, MobilePoser enables 
accurate indoor navigation and localization without the need for 
additional infrastructure or specialized hardware. This opens up 
exciting possibilities for applications such as indoor way fnding, 
context-aware virtual assistants, and immersive virtual tours. 

6.2 Mobile Gaming Experiences 
To showcase this potential, we developed a virtual table tennis game 
(Figure 11) that allows users to play remotely with others, similar 
to how Nintendo games are played in front of a TV. Each player has 
a phone in their pocket and a watch on the dominant (left) hand, 
which is controlling the racket. Players can freely move within their 
local space to control their avatars, adding a new level of physical 
interaction to the gaming experience. MobilePoser’s ability to track 
full-body movements using everyday devices eliminates the need 
for specialized controllers, making immersive gaming experiences 
more accessible to a wider audience. 

6.3 Fitness and Wellness 
MobilePoser has the potential to revolutionize ftness tracking and 
rehabilitation by providing accurate, real-time feedback on a user’s 
movements and poses without the need for external sensors or 
camera setups. This enables users to monitor their exercise form, 
track progress, and receive personalized guidance using the devices 
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Figure 12: MobilePoser’s full-body pose and locomotion can 
be used to automatically detect and count exercise repeti-
tions, better estimate calories and monitor form. 

they already own. In this example (Figure 12), a user performs a 
workout routine while MobilePoser captures the session using the 
IMU data from the smartphone in the user’s pocket. This not only 
allows the user to review their performance and track progress over 
time but also enables remote monitoring by ftness instructors or 
physical therapists. Moreover, MobilePoser’s ability to track full-
body movements facilitates interactive rehabilitation regimens [4] 
and other passive health sensing applications such as gait analysis 
[30] or hyperactivity detection [6], among others. 

7 OPEN SOURCE 
To enable other researchers and practitioners to build upon our 
work, we release our pre-trained models, data pre-processing scripts, 
and model training code as open-source software at: https://github. 
com/SPICExLAB/MobilePoser. By making our work fully repro-
ducible and extensible, we hope to accelerate research and develop-
ment in the feld of mobile motion capture using everyday devices. 

8 LIMITATIONS AND FUTURE WORK 
While MobilePoser demonstrates promising results in estimating 
full-body pose and translation using minimal instrumentation, there 
are several limitations and opportunities for future work. First, as a 
purely inertial-based technique, MobilePoser’s translation estima-
tion is still susceptible to drift, particularly when devices deviate 
from their calibrated positions. This can occur when users wear 
loose clothing, causing the phone in the pocket to move around and 
resulting in orientation changes. To address this issue, future work 
could explore re-calibration techniques based on stationary poses 
or leverage additional sensory information, such as GPS, UWB or 
visual odometry, to correct for drift. 

Second, akin to prior wor, our evaluation has limitations of being 
tested on lab collected datasets. All the test datasets (DIP, TotalCap-
ture, IMUPoser) were collected in lab settings due to the need for an 
accurate external ground truth motion capture system. Although 
we empirically demonstrate that MobilePoser works in real-world 

settings (as seen in the accompanying video), we acknowledge the 
need for future datasets captured in-the-wild. 

Another limitation of MobilePoser, much like other prior works 
[14, 28, 48, 49], is the need for a calibration step. Currently, users 
frst stand in a T-pose, which aligns the IMU data with the training 
data based on the SMPL kinematic model. While this calibration 
process is acceptable for some use cases, such as gaming, it may be 
less desirable for applications that demand seamless interactions, 
like indoor navigation. Future work could investigate more natural 
and unobtrusive calibration procedures, such as detecting common 
poses like standing with arms by the side using UWB, similar to 
SmartPoser [11]. 

In conclusion, while MobilePoser presents a signifcant step 
forward in enabling full-body pose and translation estimation using 
everyday devices, there remain several avenues for future research 
to extend the capabilities of this approach. 

9 CONCLUSION 
In this paper, we present MobilePoser, a real-time, on-device sys-
tem for estimating full-body pose and translation using IMUs in 
consumer mobile devices (phones, watches, earbuds). By leveraging 
a multi-stage approach that combines data-driven learning and 
physics-based optimization, MobilePoser achieves state-of-the-art 
accuracy while remaining lightweight and efcient. Our extensive 
evaluation on public datasets demonstrates clear improvements 
over prior work, both in terms of full-body pose estimation accu-
racy and enabling novel global translation estimation. Furthermore, 
we showcase the potential of MobilePoser through a series of proof-
of-concept applications in gaming, ftness, and indoor navigation, 
highlighting its ability to enable new and immersive experiences 
using the devices people already own. 
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