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Figure 1: EI-Lite is a lightweight electrical impedance sensing system for (a) micro-gesture recognition and (b) continuous 
pinch force estimation. (c) Application scenarios demonstrate EI-Lite’s usage as an input interface for assistive technologies, 
interactive systems, and AR/VR experiences. 

Abstract 
Micro-gesture recognition and fine-grain pinch press enables intu-
itive and discreet control of devices, offering significant potential 
for enhancing human-computer interaction (HCI). In this paper, 
we present EI-Lite, a lightweight wrist-worn electrical impedance 
sensing device for micro-gesture recognition and continuous pinch 
force estimation. We elicit an optimal and simplified device archi-
tecture through an ablation study on electrode placement with 13 
users, and implement the elicited designs through 3D printing. We 
capture data on 15 participants on (1) six common micro-gestures 
(plus idle state) and (2) index finger pinch forces, then develop 
machine learning models that interpret the impedance signals gen-
erated by these micro-gestures and pinch forces. Our system is 
capable of accurate recognition of micro-gesture events (96.33% 
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accuracy), as well as continuously estimating the pinch force of the 
index finger in physical units (Newton), with the mean-squared-
error (MSE) of 0.3071 (or mean-force-variance of 0.55 Newtons) 
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via three applications in AR/VR, gaming, and assistive technologies. 
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1 Introduction 
Micro-gestures and pinch forces are subtle and often imperceptible 
hand movements. They are widely applied in scenarios where con-
ventional input methods are impractical or intrusive, playing a cru-
cial role in human-computer interaction [34, 46], augmented/virtual 
reality (AR/VR) [22, 27], and assistive technologies [5, 45]. The dis-
creet and ergonomic nature of micro-gestures make them very 
compelling for simple 1-D and 2-D mobile UI control, such as those 
found on smartwatches [1, 38], earbuds, or smartglasses [43]. How-
ever, micro-gestures and continuous pinch forces are inherently 
difficult to capture due to their mechanically subtle nature. Pre-
vious work has explored capturing them using cameras [29, 35], 
which, while effective, limits the ubiquity of sensing due to power 
and privacy in mobile contexts. Practical micro-gesture recognition 
and pinch force estimation require a wearable setup that balances 
comfort, usability, simplicity, and precision. 

Electrical impedance sensing emerges as a promising technol-
ogy for subtle and imperceptible hand movements because of its 
simple, compact sensor design, and noise-resistant active sensing 
mechanism. This approach takes pairwise active impedance mea-
surements from surface electrodes, which enables reconstruction 
of internal impedance variations [15]. It has been widely applied 
for non-invasive and low-cost medical imaging [7, 13]. In the past 
years, wearable electrical impedance sensing devices have been 
explored for diverse applications in human-computer interaction, 
including gesture classification [24, 59, 61], activity detection [39], 
and rehabilitation [63]. Despite these advances, challenges remain 
in minor hand movement detection via electrical impedance sens-
ing. Unlike full hand gestures, micro-gestures and pinch forces are 
much more subtle, producing minimal activity in the tendons and 
muscles and leading to weak signals that are difficult for electrical 
impedance sensors to detect. Furthermore, the complex anatomi-
cal structures of the wrist (from the radioulnar joint to the proxi-
mal carpal row) [11] introduce significant variations in electrical 
impedance sensing performance. These variations not only differ 
significantly among users but also depend heavily on electrode 
placement around the wrist. Additionally, to ensure the comfort 
and usability of a wrist-worn device and to build toward a sys-
tem that can be practically realized for mobile use, the number 
of electrodes should be minimized without compromising system 
performance for those applications, and enable high sensing FPS 
required for micro-gesture detection. 

Towards this goal of enabling lightweight, mobile UI control, 
we introduce EI-Lite, a practical and efficient approach for micro-
gesture recognition and continuous pinch force estimation using an 
optimized wrist-worn electrical impedance sensing device. To over-
come the challenges of impedance signal variances due to complex 
anatomical structures, we first identify the optimal placement of 
electrodes by conducting a user study with 13 participants, which 
captures electrical impedance signals from 32×2 sensing electrodes 
covering both the proximal carpal row and the distal radioulnar 
joint areas around the wrist. We further perform an electrode ab-
lation evaluation to determine which sensor locations provide the 
greatest discriminatory information for microgesture sensing across 
users. From this information, we implement EI-Lite, an electrical 
impedance sensing wristband with only 4 electrodes (the minimum 

number of electrodes for a 4-terminal impedence measurement), 
and a custom impedance sensing board for retrieval of 6 cross-pair 
readings (all possible 4-terminal measurement combinations with 4 
electrodes) at 100Hz. As finger movements during microgestures 
and forced pinch are extremely subtle, our customized impedance 
sensing board captures both real (magnitude) and imaginary (phase) 
components of bio-impedance, moving beyond previous approaches 
that utilize only real values. Compared to the previous electrical 
impedance sensing approaches for full hand gestures, which pri-
marily look at only the real part of the impedance signals, we 
implemented a customized impedance sensing board that is capable 
of accurate imaginary part sensing as well, to accommodate the 
subtle and imperceptible finger movements during micro-gesture 
and pinch pressing. Thus EI-Lite is not only the first wrist-worn 
bioimpedance system to robustly sense such subtle micro-gestures 
and pinch forces, but also does so using a minimal number of elec-
trodes, enhancing user comfort by reducing device obtrusiveness, 
and moving one step closer toward a practically realizable system. 

We leverage EI-Lite for micro-gesture recognition and pinch 
force estimation coupling with machine learning models and few-
shots learning techniques. We collect two datasets over 15 par-
ticipants featuring 6 common micro-gestures plus idle state, and 
continuous pinching forces. Towards the goal of mobile UI control, 
our gestures set include both selection as well as scrolling type ges-
tures. Due to familiarity with touchscreen interactions, both finger 
pinches and thumb swipes have been cited as comfortable and in-
tuitive in micro-gesture design and elicitation studies [3, 17]. Thus, 
our gesture set targets taps and swipes, specifically: index finger 
pinch, index finger pinch release, middle finger pinch, middle finger 
pinch release, swipe left, and swipe right, as shown in Figure 1a. 
This gesture set also demonstrates some of the capabilities possible 
with electroimpedance, but not with IMU-based techniques, includ-
ing stateful pinch and directional swiping. The pinch force dataset 
contains impedance continuous index pinch forces measured in 
Newtons (Figure 1b). We demonstrate micro-gesture classification 
with the accuracy of 96.33% and continuous estimation of index 
pinch forces (in Newton) with the mean square error of 0.3071 
(or mean force variance of 0.55 Newtons). To further address the 
challenges of impedance signal variances across users, we explore 
few-shot learning framework for the generalization of our model. 
To evaluate the practicality of our system, we implement three 
application examples (Figure 1c): (1) hand movements input for XR 
headset while outside of the camera’s field-of-view, and pressing 
force input for XR environment, (2) seamless and subtle interaction 
control for daily activities such as teaching presentations, and (3) 
assistive smart watch input for users with limited hand functions. 

In summary, we contribute the following: 

• an ablation study with 13 participants to identify optimal 
impedance sensing locations and electrode configurations 
for micro-gesture recognition around the wrist 

• the development of the EI-Lite system, featuring a customiz-
able wearable design with 4 electrodes and a specialized 
complex-valued impedance sensing board 

• two datasets with 15 participants featuring electrical impedance 
signals of 7 micro-gesture events and continuous pinch forces 
in Newtons 
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• machine learning algorithms for micro-gesture recognition 
and continuous pinch force estimation, as well as few-shot 
learning models for generalizability and applicability 

• evaluation of our approach on micro-gesture recognition 
and pinch forces estimation using Leave-One-Subject-Out 
(LOSO) cross validation 

• three applications for enhancing user experiences in aug-
mented and interactive technology, extended reality (XR), 
and assistive technologies. 

2 Related Work 
Our work intersects the following three major domains: 1) wearable-
based gesture recognition systems, 2) on-body force sensing sys-
tems, and 3) electrical impedance based user sensing approaches. 

2.1 Wearable Micro-gesture Recognition 
Hand micro-gesture sensing is crucial for ergonomic, intuitive, and 
subtle interaction with computing systems around us [3, 23, 53]. Pre-
dominant approaches for wearable micro-gesture recognition have 
relied on vision-based systems, utilizing optical sensors [4, 48, 56] 
and IR cameras [12] and sensor fusion of acoustics and optics [54]. 
However, these camera-based methods face limitations in terms 
of privacy, power consumption, resilience to lighting conditions, 
and visual occlusion artifacts. In contrast, non-optical methods, 
although less extensively explored for hand sensing, have emerged 
as a promising lightweight alternative. Approaches along these 
lines have instrumented the whole hand [33, 41] with gloves or 
sensors on each finger. Ring-based [28, 44] sensing interfaces have 
been explored as a more practical form factor but are limited in 
their sensing fidelity to the particular finger of instrumentation. 

In contrast, wrist-worn devices serve as a more ubiquitous, portable 
and accessible interactive platform with minimal obtrusiveness, 
allowing to sense the whole hand from a single point of instrumen-
tation. While works along these lines have looked in acoustic [19], 
Electromyography (EMG) [31], optical [10, 16] and RF [21] for 
coarse hand pose sensing, they lack the fidelity for fine-grained 
micro-gesture recognition. In this regard, inertial sensing meth-
ods have seen success on consumer form factors. Apple Watch 
and Galaxy Watch have released assistive features detecting dou-
ble pinch and hand grasp models based on IMU and PPG [1, 38]. 
Viband [26] utilized high sample rate accelerometers in commodity 
smartwatches to observe pinch down, flick, and snaps. However, 
these inertial-based methods lack the fidelity to capture more subtle 
micro-gesture traits that do not create a large motion signature, 
such as thumb swipe direction, pinch finger release detection, pinch 
finger recognition, or pinch pressure. 

Closest to our work are EMG-based micro-gesture recognition [25, 
51] works that sense the electrical potential of muscle contractions 
with high sensitivity. Unfortunately, these systems require between 
16 to 64 electrodes placed on the forearm, where signal-generating 
muscle fibers are most plentiful, and therefore do not align with 
potential integration into a smartwatch form factor. Instead, for 
our system, we turn to electrical impedance measurements. As an 
active sensing method, electrical impedance does not require dense 
muscle fibers for a sufficient signal, allowing our system to sit at 

the wrist, using only 2 pairs of electrodes total, and ensuring a light-
weight minimal design with potential to integrate with commercial 
smartwatches (Section 8.4). 

2.2 On-body Force Sensing 
In addition to microgestures, our system also senses continuous 
pinch pressure. Here we discuss methods of on-body force sensing 
technologies, which aim to measure contact forces exerted by or 
onto the human body, enabling continuous and fine-grain inter-
action. Approaches in this space range from mechanical [40] and 
material-based sensing [30] to physiological signal-driven inference 
methods [8]. One common category includes resistive and capaci-
tive sensors that directly capture surface deformations. For example, 
force-sensitive resistors (FSRs) are widely used in commercial ap-
plications for surface contact pressure measurement [37], while 
capacitive-based sensors have been implemented in devices like Ap-
ple’s 3D Touch. Recent work [57] has also explored force estimation 
using capacitive image sequences to detect subtle force variations 
through skin contact. Hybrid approaches such as iSkin [52] inte-
grate both capacitive and resistive sensing into soft, deformable 
electronics for wearable pressure input. However, these approaches 
require direct contact between the sensor and the point of interac-
tion (e.g., placing sensors at the fingertip for pinch force detection), 
which is not ideal for wrist-worn or distal sensing applications. 
Such placement often interferes with natural hand movement, lim-
its wearability, and may not generalize well to everyday usage 
where minimal instrumentation is preferred. 

More precise force readings have also been enabled via vision-
based methods. GelSight [58] and other optical tactile systems mea-
sure surface normal forces via internal gel deformation captured by 
embedded cameras. Similar techniques have been adapted for head-
mounted cameras to infer pinch forces [32]. However, vision-based 
methods often face challenges in mobile scenarios due to power, oc-
clusion, and privacy concerns, making them less suitable for mobile 
or continuous use. Mechanical designs have also been used to infer 
force, where deformation of physical components (e.g., springs) 
is used to estimate pressure. The Pinch Sensor [50] and Squeezy-
Feely [40] demonstrate mechanical pinch and grip sensing through 
deformation-based feedback. While robust, such solutions often 
trade off bulk and form factor for measurement fidelity. Physiologi-
cal signal-based approaches using physiological data such as EMG 
have also been explored for pinch force estimation. For example, 
Choi et al. [8] and TouchSense [2] use EMG signals to infer contact 
force but often require high-density sensor arrays across forearm 
to upper palm and rigid body contact, limiting their applicability 
in wrist-worn form factors and subtle finger movements. 

Unlike these prior works, which either require rigid contact, ex-
tensive instrumentation, or do not target subtle wrist-based interac-
tions, EI-Lite estimates continuous pinch force from only the wrist 
area using electrical impedance signals alone. To our knowledge, 
EI-Lite is the first wearable to demonstrate real-time, contact-free 
pinch force estimation via bio-impedance sensing. This enables 
pressure-aware interactions with minimal hardware and obtrusive-
ness, making it highly suitable for mobile and assistive applications. 
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2.3 Electrical Impedance Based User Sensing 
Since first being proposed in 1978 [14], Electrical impedance sens-
ing has served as a non-invasive medical imaging method to exam-
ine breast cancer [65], brain function [36], and cardiac, lung, and 
pulmonary health [15]. By measuring the impedance between elec-
trodes distributed around an object’s perimeter in a round-robin 
fashion, an impedance map of the cross-sectional area can be back-
projected. In recent years, low-cost impedance front-ends have 
allowed for more accessible electrical impedance sensing device 
prototyping. Electrick [60] uses several electrodes placed around a 
conductively-coated object for rich touch sensing. Zhu et al. [64] 
introduced an open-source EIT toolkit for designing and fabricating 
EIT devices for health and motion sensing, with later applications 
to muscular rehabilitation [63] and liquid identification [62]. The 
non-invasive and non-line-of-sight qualities of electrical impedance 
sensing have also made it appeal to human motion sensing. 

Electrical impedance sensing has also been leveraged for various 
hand sensing tasks. At the index finger, ElectroRing [20] uses an 
injected signal to robustly determine pinch closure between the 
thumb and index finger. Z-Ring [47] uses a wideband RF sweep from 
an off-the-shelf VNA at the finger base to recognize thumb-to-index 
finger microgestures, held object recognition, and user identifica-
tion. Z-Pose extends this technique to determine hand pose [49]. 
Unlike these finger-worn systems, we seek to enable wrist-based 
micro-gesture and pinch force sensing. In addition, EtherPose [21] 
uses two cloverleaf antennae at the wrist for hand pose, but due 
to its over-the-air impedance measurement method, these anten-
nae are each approximately 2 cm in diameter to operate within 
a frequency range influenced by hand pose. Our system instead 
leverages more conventional galvanically injected impedance mea-
surements, which can be achieved with low-profile dry electrodes. 

Most similar to our work are the systems derived from elec-
trical impedance tomography that sense the hand from the wrist. 
Tomo [59] utilized between eight electrodes around the wrist or 
forearm to determine static hand poses with 86.5% within-user 
accuracy and 59.6% cross-session accuracy for a gesture set with 
pinches between the thumb and each finger and no null class. Fur-
ther work [61] increased accuracy by adding additional electrodes at 
the forearm, i.e. up to 32 electrodes, yielding up to 94% cross-session 
accuracy.Most recently, EIT-Pose [24] used sensing hardware im-
provements and eight electrodes around the forearm to determine 
hand poses. 

As compared to these systems, EI-Lite targets a more subtle 
micro-gesture set for device control in a more practical package — 
one that is more amenable to smartwatch integration. In addition, 
previous approaches only explored the real part of the impedance 
signals. For EI-lite, a customized impedance sensing board is imple-
mented for accurate imaginary part impedance sensing as well, and 
operates at a much higher system sampling rate (100Hz vs. EIT-Pose 
/ Tomo’s 10Hz), which are essential for the subtle and impercep-
tible finger movements during micro-gesture and pinch pressing 
activities. As a result, EI-Lite can achieve more than hand gesture 
recognitions, but also continuous pinch force estimation, which 
are not possible with prior EIT works, while keeping a minimized 
system design. 

3 EI-Lite System Overview 
The EI-Lite system contains two parts: (1) a wearable adjustable 
sensing wrist band around the distal radioulnar joint with 4 elec-
trodes (minimum number of electrodes required for 4-terminal mea-
surement), and (2) a custom-designed impedance sensing board. The 
individually adjustable 4 electrodes are placed on top and bottom of 
the wrist in a 2-by-2 setup. This configuration can be integrated into 
existing smart watch and band designs (e.g., Google Pixel Watch) 
with minimum effort. For example, this can be achieved by placing 
two electrodes on the back of the watch dial and two on the band 
buckle. The sensing location around the wrist and the specific elec-
trode locations are driven by the electrode location and ablation 
study detailed in the Section 4. The custom impedance sensing 
board is designed based on the MuscleRehab [63] schematics, an 
EIT sensing board specialized for muscle engagement monitoring. 
Compare to the MuscleRehab board, our board features several 
major design improvements optimized for high frequency injecting 
channel switching, which enables high sampling rate (up to 100 Hz) 
required for micro-gesture detection and continuous pinch force 
estimation, reliable real and imaginary parts impedance sensing, 
and a much more compact design for wearable applications. 

3.1 Wearable Sensing Wrist Band 
The electrical impedance sensing wrist band consists of a wrist-
worn ribbon and 4 individual sensing units (Figure 2a&b). The 
wrist-worn ribbon (0.6cm×27cm×0.05cm) is 3D printed with TPU 
and lined up with slots (0.2cm×0.3cm) every 0.3cm. One end of 
the ribbon has two extruded buttons that can be inserted into 
the slots to create an adjustable wristband for wrist circumfer-
ences ranging from 10 to 22 cm. The 4 individual sensing units 
each consists of a case, a brass ball, and a ring terminal. The case 
(1.7cm×2.2cm×0.7cm) is 3D printed with PLA and consists of two 
parts that can be tightly locked with a snap-fit joint after the compo-
nents are placed within. The case has two slots on both sides for the 
wrist-worn ribbon to thread through, with just enough flexibility 
for adjustable positioning of the unit while having enough friction 
to keep it in place. The brass ball (3/8" diameter) fits tightly inside 
the case, mechanically connected to the ring terminal, with one 
third of its height exposed at the bottom to be in contact with the 
skin, allowing for a point-contact at desired location for each user 
to optimize accuracy. Finally, the ring terminals are connected to 
multi-thread wires via the crimping tool to transmit the AC signal 
from and the resulting voltage response to the sensing board. Over-
all, the wearable form factor is designed to be lightweight, small, 
and flexible. 

3.2 Impedance Sensing Board 
For better integration with the wearable form factor, we imple-
mented a customized slim electrical impedance sensing board (2.5 cm 
× 7 cm), which is built around a Teensy 4.0 microcontroller, and 
responsible for injecting the AC signal and measuring the resulting 
voltage response across all pair combinations of the 4 electrodes (in 
total 6 measurements). The impedance sensing board consists of 
two main parts: a current drive circuit for injecting the AC signal, 
and a voltage response measurement circuit for measuring the volt-
age output (i.e., signal amplitude and phase) from the current drive. 
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Figure 2: EI-Lite system overview. (a) The design layout of our wearable electrical impedance sensing wrist band, with 4 
individually adjustable electrodes. (b) The electrodes are placed on top and bottom of the wrist’s distal radioulnar joint in a 
2-by-2 setup. (c) The coupled readout circuit board to serialize electrical impedance readings. 

The current injecting circuit is composed of a signal generator, 
an adjustable instrumentation amplifier, and a voltage-controlled 
current source (VCCS). Specifically, the signal generator (AD5930) 
serves as a voltage source and generates a small, constant-amplitude, 
differential sine waveform at 50kHz frequencies. 

Compared to the original MuscleRehab and EIT-kit board design, 
we have implemented several major updates over both current 
drive and voltage response measurement circuits, so that we are 
able to reliably sense imaginary impedance signal at high system 
sampling rate (100 Hz). First of all, the run-time-settable signal 
strength is now controlled in a linear fashion by varying a reference 
voltage used by the AD5930 function generator via a DAC (Digital-
to-Analog Converter). Using a 12-bit AD5620 DAC, the improved 
design approximately gives 11 bits or (2358 values to be exact) of 
drive strength, settable with an adjustment time of roughly 0.5 ms. 
In both the micro-gesture recognition and pinch force estimation, 
we set the signal amplitude and frequency to be 1mA at 50kHz. 

The second major improvement addresses the drift issue inherent 
to conventional Howland current sources, which ideally maintain 
a constant current only within a narrow voltage range. Rapid elec-
trode array switching (e.g., during high sampling rate) and human 
tissue interactions (where there can be non-zero voltage offsets 
from electrodes) exacerbate voltage drift, causing the circuit to hit 
power rails, temporarily losing current-source behavior. To mitigate 
this, we redesigned the circuit using instrumentation amplifiers for 
its Howland Current Source networks, with internal laser-trimmed 

resistors and buffered feedback (two unity-gain op amps sown) 
to achieve better balanced current source in a Mirrored Howland 
Circuit and minimize drift. Given the high-output impedance of the 
mirrored Howland configuration, we introduced high-value bias 
resistors connecting each drive electrode to 𝑉𝑐𝑐 /2. These resistors 
establish a stable mid-supply reference, preventing voltage accumu-
lation and rail saturation, thereby preserving ideal current-source 
performance during continuous electrode switching. 

In addition, on the sensing software side, the system injects an 
integer number (exactly 7 cycles) of stimulating cycles per mea-
surement and compares injection signals against the waveform 
generator flags in real time. This ensures minimal stray voltage 
accumulation during rapid electrode switching, preserving accurate 
imaginary impedance measurements. The voltage response circuit 
captures differential signals from four electrodes via dual multi-
plexers (ADG731), feeding two unit-gain input buffers (ADA4841) 
with 350 Hz high-pass filters. The buffered signals pass through an 
adjustable-gain instrumentation amplifier (AD8220, modulated by 
AD5260), scaled from 3.3 V to 1 V, and filtered again (1 kHz–1 MHz 
band-pass). Finally, a 10-bit ADC (AD9200) digitizes the filtered 
output at 20 MHz. 

4 Electrode Location & Ablation Study 
To overcome the challenges of impedance signal variances due to 
complex anatomical structures, we conduct a user study with 13 
participants to evaluate which area around the wrist is the most 
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Figure 3: Electrode Location & Ablation Study. (a) The user study was performed by capturing electrical impedance signals from 
2 by 32 electrodes around both proximal carpal row (L1) and distal radioulnar joint (L2) area. (b) The electrical pairs’ signal 
effectiveness ranking in red-to-blue color spectrum. (c) The signal effectiveness heat map around the wrist area in red-to-blue 
color spectrum. 

optimized location for sensor placement for subtle finger move-
ments across users. To achieve this, we capture electrical impedance 
signals from various locations around the wrist, identifying the po-
sitions that consistently produce the strongest and most reliable 
signals across users. In this section, we outline the design of the 
study and the key findings that inform the most effective electrode 
placements for EI-Lite system design. 

4.1 Study Setup 
We recruited 13 participants (8 males and 5 females), and all par-
ticipants used their right hand for the study for consistency. We 
designed a flexible and adaptive sensing wristband that fits users 
with wrist sizes from 14cm to 20cm. The wristband is integrated 
with 64 individual electrode units in a 32×2 layout, covering both 
proximal carpal row (L1) and distal radioulnar joint (L2) area evenly, 
as shown in Figure 3a. This adaptive design ensures that the relative 
positioning of each electrode remains consistent on the wrist across 
different users. During each data collection session, participants are 
instructed to move one finger at a time, then two fingers together, 
and so on up to five fingers simultaneously, covering all possible fin-
ger combinations (in total 31 finger combinations). This is followed 
by a 30-second period of free movement. Each user performed 3 
data collection sessions for each of the wrist locations (L1 and L2), 
with each session lasting ca. 1.5 min. 

The data collection is conducted inside of a motion tracking 
camera booth with 18 synchronized cameras recording the finger 
positions and hand poses at 30 frame-per-second. The impedance 
sensing board is programmed to sample at 3.3 Hz. The finger and 
hand positions ground truth are generated via triangulation on the 
21-keypoint MediaPipe results over each camera’s frame. In total, 
14484 frames of data be collected (7494 for L1 and 6990 for L2), each 
frame contains 1024 (32×32 impedance measurements). 

4.2 Results 
We assess the quality of electrical impedance sensing signals from 
L1 and L2 by evaluating their performance in gesture recognition. 

This task is selected because it closely resembles our task of micro-
gesture recognition, involving similar movements of tendons and 
muscles around the wrist. More specifically, we built two ML models 
for 21-keypoint location prediction for the proximal carpal row (L1) 
and distal radioulnar joint (L2) areas data. The two models use 
the same ExtraTreesRegressor from SciPy, similar to the model 
architecture used in the previous works [24]. 

The results show the mean per joint positional error at L1 and L2 
to be 25.35 mm and 13.0 9mm respectively, indicating that the distal 
radioulnar joint (L2) area is a more accurate and generalizable 
location for micro-gesture recognition via electrical impedance 
sensing across users. This result came as a surprise, as the proximal 
carpal row (L1) area should in theory perform better because it 
is more anatomically aligned with individual finger movements, 
and it was performing better during pilot study with 2 users and 
for the general dataset if model is trained & tested within single 
user’s data. However, the distal radioulnar joint area turned out 
performing better across users. We hypothesize that this might 
due to the proximal carpal row area is: (1) much more complex 
anatomically therefore more variance between different human 
subjects, and (2) too close to the hand movement which likely leads 
to a lot of skin friction noises introduced during micro-gesture 
movements that might result in different wrist-to-hand movement 
/ orientation, whereas the distal radioulnar joint is considerably 
more stable during the hand movements. More thoroughly studies 
are needed to further verify our hypothesizes. 

In addition, to minimize the number of electrodes for our design 
for device wearability and higher sensing FPS, we conducted an 
electrode ablation evaluation based on which electrode pairs around 
the targeting wrist sensing area contain most impedance changing 
information during the micro-gesture movements. Each electrode 
pair refers to the adjacent electrodes in L1 or L2 area, and was 
measured separately. We then calculated the relative impedance 
reading changes (i.e. signal standard deviations) measured at each 
pair location (in total 32) for all users when performing each ges-
ture movement, and use that as an indicator for how “strong” the 
signals are at that pair location across users. We ranked them from 
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high to low, the higher the more impedance changing informa-
tion that electrode pair channel is consist of. More detailed results 
with individual rankings and the overall signal heat map around 
wrist area are shown in the Figure 3b&c. The results indicate that 
approximately the top and bottom areas of the wrist contain the 
most impedance changing information during the micro-gesture 
movements. Therefore when designing the EI-Lite wearable sens-
ing wrist band, we decided to place the 4 electrodes on top and 
bottom of the wrist (distal radioulnar joint) area in a 2-by-2 setup 
to maximize the signal effectiveness. 

5 Micro-Gesture Recognition 
In this section, we present the data collection protocol, data pre-
processing methods, model architecture, and results of micro-gesture 
recognition. 

5.1 Data Collection 
To accurately collect multi-channel electrical impedance data dur-
ing each of the micro-gesture movement, we implement a synchro-
nized data collection setup with a commercial Force-Sensitive Resis-
tor (FSR) directly connected to our EI-Lite device. More specifically, 
we fix the FSR (Interlink Electronics FSR 400 Short, 5mm diameter 
Circle [18]) to the tip of the thumb, and use the synchronized force 
reading as an indicator of the start and end of each micro-gesture 
event. We adapted this FSR sensor on finger approach for contact & 
force detection from previous work [32]. We chose a FSR size much 
smaller than typical thumb area to ensure the thumb can physically 
contact the other hand parts during each gesture without being 
covered, so that the impedance measured is as close to the condition 
where there is no FSR present as possible. In addition, we adapt 
the FSR placement based on each user’s habit, i.e. we ask them 
to perform all the micro-gestures before data collection and place 
the FSR at the center of their natural contact area on the thumb to 
achieve more accurate and synchronized reading. 

In order to capture the subtle and swift changes during micro-
gestures, our device is set to record at 100 frame-per-second, which 
is within the typical sampling rate range for IMU-based approaches [55] 
and align with our data collection pilot study experience. Each cap-
tured frame contains 6 individual measurements with 12 values, 
with both real and imaginary parts for each measurement. During 
each data collection session, the participant follows instructions 
displayed on a laptop screen and performs each of the six micro-
gestures repeatedly for one minute at their own comfortable pace, 
followed by a 30-second idle state. Each participant completes 3 data 
collection sessions. During data collection users were not required 
to use any specific arm / hand pose for their sessions, yet they were 
asked to sit still during each session, but free to change between 
sessions. To ensure a diverse dataset and prevent overfitting, the 
device is removed between sessions, and participants engage in 
unrelated tasks during these breaks. 

5.2 Dataset Pre-processing 
Since the dataset was recorded continuously, there are large sections 
of idle state between sequences of valid micro-gesture events. To 
maintain a balanced dataset for learning and minimize the impact of 
unrelated signals, we pre-process the data to extract valid windows 

for each of the seven micro-gesture events (six gestures and idle 
state), which serve as individual input data points for our model, 
as shown in Figure 4. Valid signal sequences are first identified 
based on synchronized FSR sensor readings, indicating where each 
micro-gesture occurs. We then apply a sliding window approach to 
extract 60-sample windows (equivalent to 600 ms in real time) from 
these sequences, following specific criteria. Detailed pre-processing 
criteria for each micro-gesture category are provided below. Note 
that FSR forces sensor’s reading below 1 N are considered as zero. 

Pinch Start: For index and middle pinch start signals, valid signal 
sequences are identified by allowing between 40 and 10 consecutive 
zero samples before the FSR signal’s rising edge. Additionally, a 
minimum of 5 consecutive non-zero samples apart from the FSR sig-
nal’s falling edge is required. Then valid data windows are extracted 
through window-sliding with a stride of 8 samples. 

Pinch Release: For index and middle pinch release signals, valid 
signal sequences start with the FSR signal’s peak and end 15 samples 
before the next rising edge. Valid data windows are extracted using 
a sliding window approach with a stride of 8 samples. Each window 
must contain at least 5 non-zero samples (i.e. the pinch release 
event lasted for less than 0.05 second are discarded). 

Swipe: For the swipe left and swipe right signals, valid signal 
sequences are selected with up to 20 zero samples and at least 4 
consecutive zero samples before the FSR signal’s rising edge. Valid 
data windows are extracted through window-sliding with a stride 
of 8 samples. 

Idle State: For the idle states data windows, we extract directly 
from idle sections at 4 samples per stride (since at idle state, the 
FSR readings are all at 0). Comparable numbers of data points are 
extracted for a balanced dataset. 

In total, 35680 valid data windows for 7 micro-gesture events 
were collected across 15 users, including 6015 windows for idle 
state, and up to 5553 for each single micro-gesture. 

5.3 Model 
Our model takes in a 60-frames time series of 12-channel electrical 
impedance data sampled at 100hz, resulting in an input shape of 
(60, 12). This input time series spans 0.6 second in total while in-
corporating a 0.3-second look-ahead time. The output of our model 
is a (1, 7)-shaped vector probabilities of the seven micro-gesture 
events. We pass each input window through two Conv1D layers 
with 32 and 64 filters, respectively, both using ReLU activation and 
followed by batch normalization and max-pooling layers. After 
feature extraction, the data is flattened and passed through a dense 
layer with 64 units, concluding with a softmax output layer for 
classification. The model is trained by minimizing the categorical 
cross-entropy loss using the Adam optimizer at the learning rate of 
0.001. Our model consists of 20,631 parameters, occupying 81 KB 
of memory, making it suitable for on-device execution. Using one 
V100 GPU, we are able to train the model in under an hour. 

Additionally, to improve the generalization of our model across 
users, we adopt a few-shot learning approach [42], as demonstrated 
in Figure 5a. We fine-tune the pre-trained classifier using up to 40 
windows of data from previously unseen participants. This fine-
tuning process refine the model weights through full network back-
propagation and takes less than a minute. We experimented with 
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Figure 5: Micro-gesture recognition. (a) We leverage a few-shot learning approach to improve the generalization of our model 
on unseen users. (b) Overall, our model achieves a classification accuracy of 96.33% on seen users and (c) up to 80.6% on unseen 
users with limited user examples. 

different fine-tuning strategies ranging from one window size to a 
full-session of unseen data, to evaluate the influence of calibration 
data length on model performance and generalization. Our model 
evaluation follows a standard Leave-One-Subject-Out (LOSO) cross-
validation procedure. 

5.4 Results 
Using 80% of the full dataset (across all users) for training and vali-
dation, and the rest for testing, we achieve a classification accuracy 
of 96.33%, as demonstrated in Figure 5b (and ca. 16% higher than 
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Figure 6: Pinch force estimation result. The predicted pinch 
force aligns with the ground truth captured by the force-
sensitive resistor. 

using the electrical impedance real part signal only). We then as-
sess the model’s generalizability across unseen users. Given the 
unique characteristics of each user’s hand structure, the electrical 
impedance signals display highly distinctive features. This variance 
leads to a notable decrease in classification accuracy to 37.7% when 
applied to unseen users. Using a few-shot learning technique, we 
improve the performance of our model on unseen users by incre-
mentally increasing the number of observed windows from 1 to 
40, where each window consists of 60 frames and is equivalent to 
0.6 seconds in real time. The few-shot learning approach leads to a 
significant boost in classification accuracy, reaching 80.6% with 40 
observed windows or just 24 seconds of data (Figure 5c). It demon-
strates the effectiveness of few-shot learning in adapting the model 
to diverse hand structures and improving its performance on new, 
unseen data. 

6 Continuous Pinch Force Estimation 
In this section, we present the data collection protocol, data pre-
processing methods, model, and results of continuous pinch force 
estimation. 

6.1 Data Collection 
Similarly to the data collection setup in the Micro-gesture event 
recording, we attach an FSR to the upper area of the thumb and 
use the synchronized FSR force readings to capture real-time pinch 
forces for supervision. During each data collection session, the 
participants are instructed to press on the thumb with the attached 
FSR sensor using their index finger, gradually increasing the pinch 
forces until they reach the maximum force they would consider as a 
"hard pinch". They then gradually decrease the pinch force until the 
index finger is no longer in contact with the thumb. The participants 
are instructed to perform this movement for 10 times, with a totally 
duration of ca. 1 min to 1.5 min. Again, each participant is asked 
to record 3 such pinch force data collection sessions, in between 
which the devices are taken off from the participants. 

6.2 Dataset Pre-processing 
The pre-processing of pinch forces dataset is straightforward, as 
the impedance and FSR force reading are sampled at the same 
100Hz with a 1-to-1 correspondence with our electrical impedance 
signals. According to the FSR datasheet [18], we first filtered any 
force readings less than 0.3 N as 0 N to eliminate noises. We then 
apply a sliding window approach to extract 10-sample windows 
(equivalent to 100 ms in real time) from each data collection session, 
with corresponding ground truth as the mean of the 10-sample 
window force readings in Newton. In total, 351239 samples are 
collected for the dataset across 15 participants. 

6.3 Model 
We estimate pinch forces in a continuous manner through a Ran-
domForestRegressor, with 200 estimators. This model takes in a 
time series of electrical impedance data, with a shape of (10, 12) 
and outputs a pinch force prediction in Newtons. The model is 
tested in two scenarios: (1) a standard train-validation-test split 
with 70% training data, 10% validation data and 20% test data, and 
(2) Leave-One-Subject-Out (LOSO) cross-validation. Performance 
is assessed using mean squared error(MSE) and 𝑅 2 score. 

To enhance generalizability, we also implement a CNN-based 
neural network with three convolutional layers (32, 64, and 128 
filters), each with a kernel size of 3 and ReLU activation. A Global-
AveragePooling1D layer reduces dimensionality, followed by fully 
connected layers (64, 32, 16 units) with ReLU activation. A final 
sigmoid-activated neuron outputs a pinch force percentage relative 
to the maximum detected for each user. The model is trained using 
the Adam optimizer (learning rate = 0.001) and MSE loss. Evalua-
tion follows the same LOSO protocol, with MSE and mean absolute 
error (MAE) as key metrics.This model has a total of 42,977 parame-
ters, occupying 167.88 KB memory, suitable for real-time on-device 
inferences. Training on a V100 GPU is completed in under an hour. 

We experiment with input sequence window sizes of 10, 20, 
and 40 frames to assess the impact of sequence length on feature 
extraction and model accuracy. Each window size was tested to 
evaluate the trade-off between prediction latency and the ability 
to capture temporal dependencies for more accurate prediction. 
Furthermore, we experimented with varying amounts of calibration 
data, ranging from 0 (no calibration) to 40 seconds of calibration 
data from unseen participants, to evaluate its influence on model 
performance and generalization. This test help assess the trade-off 
between the quantity of calibration data (or length of calibration 
time) and the model’s accuracy and generalization capabilities. 

6.4 Results 
Using 80% of the full dataset (across all users) for training and vali-
dation, and the rest for testing, we are able to estimate the pinch 
force with a mean-squared-error (MSE) of 0.3071 or mean-force-
variance (RMSE) of 0.55 N. As demonstrated in Figure 6, our model 
predicts the pinch forces in a continuous manner, aligning with the 
groundtruth captured by the FSR sensor. However, our model fails 
to generalize to unseen users, as evident in Figure 7a top-left panel. 
This can be explained by our observation of the significant variation 
in individual pinch force ranges, which span from 5.41 N to 12.67 N. 
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While the electrical impedance signals effectively capture the pat-
terns and trends of pinch forces for each user, they can not estimate 
the force range accurately without prior exposure to specific user 
data. To this end, we enhance the model’s generalization by refin-
ing the pre-trained model with up to 40 windows from previously 
unseen users. As demonstrated in Figure 7, the predicted pinch 
forces increasingly align with the ground truth, with a decreasing 
mean force variance as the number of injected windows increases. 
Additionally, the model’s performance improves with larger input 
window sizes (Figure 7b). This is expected, as larger input windows 
provide more information, though they also introduce a trade-off 
for real-time estimation, as larger windows result in longer delays. 
Overall, we are able to retrieve reliable pinch force predictions for 
unseen users via the few-shot learning approach. 

7 Applications 
EI-Lite’s compact, wearable design and ability to accurately recog-
nize micro-gestures and estimate pinch force make it well-suited for 
enhancing user experiences in extended reality (XR), augmented 
and interactive technology, and assistive technologies. 

7.1 Extended Reality (XR) 
In this paper, we use the term XR to encompass Augmented Reality 
(AR), Virtual Reality (VR), and Mixed Reality technologies. Hand 
gestures stand at the center of new XR interaction paradigms, as 
seen in commercial products like Vision Pro and Oculus hand track-
ing systems, due to the freedom of movement they provide users. 
While current XR devices predominantly employ vision-based meth-
ods for hand gesture recognition, this significantly constrains in-
teraction by requiring hands to remain within the camera’s field 
of view of the HMD. In addition, even within the camera view 
point, there is no robust method for fine-grained finger pressing 
and pinching input. 

Our electrical impedance-based interface addresses these limita-
tions by enabling micro-gesture input regardless of hand position 
relative to the headset’s cameras, substantially increasing hand 
freedom compared to existing methods. We implemented two XR 
applications to demonstrate this capability. Figure 8 demonstrates 

intuitive micro-gesture control in a 3D RPG game, where players 
can open or close inventory window (index pinch and release), 
switch weapons in floating windows (left or right swipe), and view 
weapon’s pop-up descriptions (middle pinch and release). This im-
plementation would create a more intuitive gaming experience by 
eliminating the need for traditional controller buttons or complex 
menu navigation. Players can maintain immersion in the game 
world while performing common actions through natural hand 
movements, even when their hands are not directly visible to the 
headset’s cameras. The system’s ability to distinguish between dif-
ferent finger pinches and directional swipes provides sufficient 
input variety for complex game mechanics without requiring visual 
line-of-sight to the user’s hands, offering considerable advantages 
over conventional vision-based hand tracking systems in gaming 
contexts. In addition, Figure 9 shows how pinch force detected 
through EI-Lite can be applied to virtual objects, enabling not just 
kinematic interactions that simulate appearance of motion, but also 
kinetic interactions that replicate physical forces–the interacting 
fruit object deforms according to applied pinching forces, and when 
the force exceeds 6N, the fruit object bursts. 

7.2 Interaction Control for Daily Activities 
Micro-gesture recognition using EI-Lite enables seamless inter-
action with everyday devices. This technology can be applied to 
smart home environments, allowing users to control household 
appliances such as lights, thermostats, entertainment systems, and 
smart displays through intuitive gestures. For instance, a simple 
pinch gesture could turn lights on or off, while swipe gestures 
might adjust temperature settings or audio volume. The electrical 
impedance sensing technology provides significant advantages over 
camera-based systems by functioning regardless of lighting condi-
tions or direct line-of-sight to the controlled device. Additionally, 
it offers a natural interface for PC operations such as presenta-
tion control, document navigation, and media playback without 
requiring physical contact with traditional input devices. 

Figure 10 showcases a presentation control application demon-
strating this capability. Users can start slideshows with an index fin-
ger pinch and release, end presentations with a middle finger pinch 
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Figure 8: EI-Lite for VR gaming. A user open the weapon menu, swipe between floating menus, view pop-up details window, 
and select new weapon by performing different micro-gestures wearing EI-Lite. 

and release, and navigate between slides using left/right swipes. 
These micro-gestures, detected through electrical impedance, offer 
discreet interaction particularly valuable in public speaking scenar-
ios where maintaining audience engagement is crucial. This imple-
mentation would create a more intuitive presentation experience by 
eliminating dependence on remote controls or keyboard shortcuts, 
allowing presenters to move freely throughout the presentation 
space while maintaining seamless control of digital content. 

7.3 Assistive Technology 
Our research also offers significant potential for accessibility ap-
plications. The academic community has developed numerous ex-
oskeletal systems using muscle activity for rehabilitation and assis-
tive purposes [6, 9]. As our technology evolves to predict increas-
ingly diverse and small hand movements, it could make revolution-
ary contributions to prosthetic exoskeleton development and other 
assistive technologies. 

This technology particularly shines in assistive control applica-
tions. For example, individuals who suffer from extremity amputa-
tion or with limited hand function could still perform some interac-
tions that typically require two hands. Figure 11 demonstrates this 
capability through our application that enables smartwatch control 
via one-handed micro-gesture recognition. Users with arm/hand 
injuries or those who have experienced unilateral extremity ampu-
tation can still control their smart watch, such as music playback 
on Spotify using index finger pinch gestures to start/pause mu-
sic, and swipe left or right to navigate to next or previous songs. 
This approach could play a crucial role in creating more inclusive 
digital experiences, significantly enhancing accessibility for indi-
viduals with physical disabilities and promoting more equitable 
participation in both virtual and physical environments. 

Figure 9: EI-Lite for force estimation in XR. EI-Lite estimates 
the pinch forces through electrical impedance readings and 
projects it to an XR scenario. 
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Figure 10: EI-Lite for presentation control. A user pinches 
with different fingers to start & end the presentation, and 
swipes left / right to next / previous slides. 

Figure 11: EI-Lite for accessible smartwatch control. A user 
with limited hand functions performs one-handed micro-
gestures to control a smartwatch. 

8 Discussion and Future Work 
In this section, we discuss some limitations and future work direc-
tions of our EI-Lite system, including the electrode design form 
factor, limitations of our current data collection methods, poten-
tial future improvements over the ML model generalizability, and 
our insights on how the EI-Lite approach can be integrated with 
commercial smartwatch designs. 

8.1 Electrode Form Factor 
Current designs rely on rigid electrodes, which are not the most 
practical and comfortable option for wearable interactive devices. 
In future iterations, these electrodes could be optimized for greater 
flexibility and wearability. For instance, integrating the electrodes 
directly into a wristband using conductive fabrics [62] could provide 
a seamless solution, eliminating the need for bulky 3D-printed elec-
trode casings. This approach would not only enhance user comfort 
but also allow for more natural and unobtrusive wear, improving 
long-term usability in everyday environments. Moreover, flexible 
electrode designs could potentially adapt better to the varying 
anatomical structures of users, improving signal consistency and 
overall sensing performance across a broader range of individuals. 

8.2 Data Collection Methods 
While our current approach for detecting finger contact and pinch 
force - using an FSR sensor mounted on the finger - is adapted from 

prior research [32], this setup inherently constrains the potential for 
fully autonomous pinch force estimation. Moreover, our data collec-
tion procedures did not rigorously address some interaction scenar-
ios, such as conditions involving significant arm or hand sweating, 
or interactions involving other limbs or body parts. These may 
introduce additional noise or variability into impedance measure-
ments, potentially impacting classification accuracy or estimation 
reliability. For future work, we will explore other non-contact based 
data labeling approaches, and conduct more extensive user studies 
to capture diverse environmental and interactive conditions. 

8.3 Model Generalizability 
Our pinch force regressor struggled with generalizing to new users. 
Results demonstrate that while the predicted force patterns align 
with the ground truth (i.e., peaks and dips), the values fall within a 
different range. This suggests that while our regressor can identify 
pinch force patterns, it limits in accommodate the significant indi-
vidual differences in body structure and pinching strength. In this 
work, we improve the generalizability of our models by few-shot 
learning. Future work can explore a physical calibrator to adjust for 
these differences across users, improving the model’s adaptability, 
as well as one-shot learning through better representation learning 
and fine tuning. Additionally, we will investigate data augmenta-
tion techniques to generate a diverse set of simulated electrical 
impedance data in a low-cost and scalable manner, aiming to build 
a more robust model for both micro-gesture recognition and force 
estimation. In addition, based on our experiment, the EI-Lite is quite 
robust to forearm movement, likely because the relative electrode-
to-muscle/tendon position stays the same as long as the electrodes 
are in good contact with skin. However, it can be affected by large 
wrist rotations, we envision to resolve this in future work by in-
tegrating gyroscope reading (e.g. from smart watches) to include 
wrist orientation information in the model. 

8.4 Integration with Commercial Smartwatches 
EI-Lite’s lightweight, four-electrode design makes it highly suit-
able for integration with commercial smartwatches. Unlike prior 
systems that often require bulky forearm instrumentation, our con-
figuration can be embedded directly into the smartwatch form 
factor. For example, two electrodes can be integrated into the watch 
body on the dorsal wrist side, while the other two can be embedded 
into the strap or buckle underneath the wrist—maintaining a famil-
iar and unobtrusive design. The electrode size (ca. 1cm in diameter) 
in our prototype is selected based on the current smartwatch case 
size (35mm-45mm) for fitting 2 electrodes + spacing (1cm) between. 
It’s also worth noticing that with the current electrode design, only 
the bottom 1/3 (ca. 3.3mm) of the electrode is contacting the skin, 
the top 2/3 height can be removed when integrating into wear-
ables. This arrangement enables full 4-terminal impedance sens-
ing without additional accessories, while preserving comfort and 
wearability. It also opens opportunities for multimodal sensing by 
combining impedance signals with onboard IMUs, PPG, or haptics. 
Such integration could expand existing gesture features (e.g., pinch, 
double pinch) with richer inputs like continuous pinch force or 
multi-finger gestures, supporting AR/VR and assistive interactions. 
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9 Conclusion 
In this paper, we present EI-Lite, a lightweight, wrist-worn electrical 
impedance sensing device designed for micro-gesture recognition 
and continuous pinch force estimation. Through an ablation study 
on electrode placement with 13 users, we optimize the device ar-
chitecture and validate its performance by capturing data from 15 
participants on six common micro-gestures (plus idle state), and 
index finger pinch forces. Our machine learning models demon-
strate high accuracy in recognizing micro-gesture events (96.33%) 
and achieve precise pinch force estimation, with a mean-squared-
error (MSE) of 0.3071 (or mean-force-variance of 0.55 Newtons). We 
implemented three application examples in AR/VR, gaming, and 
assistive technologies, to demonstrate EI-Lite’s real-world appli-
cability. These results highlight EI-Lite’s potential for enhancing 
HCI applications by providing an intuitive and discreet solution for 
subtle finger and hand interactions. 
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